Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction hydrogenation over platinum

Nitro groups are readily reduced to primary amines by a variety of methods Cat alytic hydrogenation over platinum palladium or nickel is often used as is reduction by iron or tin m hydrochloric acid The ease with which nitro groups are reduced is especially useful m the preparation of arylamines where the sequence ArH ArN02 ArNH2 IS the standard route to these compounds... [Pg.932]

Production is by the acetylation of 4-aminophenol. This can be achieved with acetic acid and acetic anhydride at 80°C (191), with acetic acid anhydride in pyridine at 100°C (192), with acetyl chloride and pyridine in toluene at 60°C (193), or by the action of ketene in alcohoHc suspension. 4-Hydroxyacetanihde also may be synthesized directiy from 4-nitrophenol The available reduction—acetylation systems include tin with acetic acid, hydrogenation over Pd—C in acetic anhydride, and hydrogenation over platinum in acetic acid (194,195). Other routes include rearrangement of 4-hydroxyacetophenone hydrazone with sodium nitrite in sulfuric acid and the electrolytic hydroxylation of acetanilide [103-84-4] (196). [Pg.316]

The above generalities apply particularly to palladium. Hydrogenation over platinum or rhodium are far less sensitive to the influence of steric crowding. Reduction of 1-t-butylnaphthalene over platinum, rhodium, and palladium resulted in values of /ci//c2 of 0.42, 0.71, and 0.024, respectively. Also, unlike mononuclear aromatics, palladium reduces substituted naphthalenes at substantially higher rates than does either platinum or rhodium. For example, the rate constants, k x 10 in mol sec" g catalyst", in acetic acid at 50 C and 1 atm, were (for 1,8-diisopropylnaphthalene) Pd (142), Pt(l8.4), and Rh(7.1)(25). [Pg.120]

Arylamines are usually prepared by nitration of an aromatic starting material, followed by reduction of the nitro group (Section 16.2). The reduction step can be carried out in many different ways, depending on the circumstances. Catalytic hydrogenation over platinum works well but is often incompatible with... [Pg.927]

For a discussion, see Rylander, P.N. Catalytic Hydrogenation over Platinum Metals, Ref. Ill, p. 59. Also see Hudlicky, M. Reductions in Organic Chemistry, Ellis Horwood Ltd., Chichester 1984. [Pg.1107]

Rylander in Catalytic Hydrogenation Over Platinum Metals (p. 39, Academic Press, New York, 1967). Nitrobenzene in ethanol was hydrogenated at room temperature and 1 atm over various amounts of 5% Pd on carbon. Four loading levels of catalyst were used. At each level, the reduction was carried out in two different types of batch reactor. [Pg.532]

The double bond in indole and its homologs and derivatives is reduced easily and selectively by catalytic hydrogenation over platinum oxide in ethanol and fluoroboric acid [456], by sodium borohydride [457], by sodium cyanoborohydride [457], by borane [458,459], by sodium in ammonia [460], by lithium [461] and by zinc [462]. Reduction with sodium borohydride in acetic acid can result in alkylation on nitrogen giving JV-ethylindoline [457]. [Pg.56]

IsoquinoUne was converted to 1,2,3,4-tetrahydroisoquinoline in 89% yield by reduction with sodium in liquid ammonia and ethanol [473], and to a mixture of 70-80% cis- and 10% trans-decahydroisoquinoline by catalytic hydrogenation over platinum oxide in acetic and sulfuric acid [474]. Without sulfuric acid the hydrogenation stopped at the tetrahydro stage. Catalytic hydrogenation of isoquinoline and its derivatives is the topic of a review in Advances in Catalysis [439]. [Pg.58]

Reaction conditions used for reduction of acridine [430,476, partly hydrogenated phenanthridine [477 and benzo f]quinoline [477 are shown in Schemes 38-40. Hydrogenation over platinum oxide in trifluoroacetic acid at 3.5 atm reduced only the carbocyclic rings in acridine and benzo[h]quinoline, leaving the pyridine rings intact [471]. [Pg.59]

Alkyl chlorides are with a few exceptions not reduced by mild catalytic hydrogenation over platinum [502], rhodium [40] and nickel [63], even in the presence of alkali. Metal hydrides and complex hydrides are used more successfully various lithium aluminum hydrides [506, 507], lithium copper hydrides [501], sodium borohydride [504, 505], and especially different tin hydrides (stannanes) [503,508,509,510] are the reagents of choice for selective replacement of halogen in the presence of other functional groups. In some cases the reduction is stereoselective. Both cis- and rrunj-9-chlorodecaIin, on reductions with triphenylstannane or dibutylstannane, gave predominantly trani-decalin [509]. [Pg.63]

Geminal dihalides undergo partial or total reduction. The latter can be achieved by catalytic hydrogenation over platinum oxide [512], palladium [512] or Raney nickel [63, 512], Both partial and total reduction can be accomplished with lithium aluminum hydride [513], with sodium bis(2-meth-oxyethoxy)aluminum hydride [514], with tributylstannane [503, 514], electro-lytically [515], with sodium in alcohol [516] and with chromous sulfate [193, 197]. For partial reduction only, sodium arsenite [220] or sodium sulfite [254] are used. [Pg.64]

Vinylogs of benzylic alcohols, e.g. cinnamyl alcohol, undergo easy saturation of the double bond by catalytic hydrogenation over platinum, rhodium-platinum and palladium oxides [39] or by reduction with lithium aluminum hydride [609]. In the presence of acids, catalytic hydrogenolysis of the allylic hydroxyl takes place, especially over platinum oxide in acetic acid and hydrochloric acid [39]. [Pg.80]

Reduction of carbocyclic rings in aromatic ketones can be accomplished by catalytic hydrogenation over platinum oxide or rhodium-platinum oxide and takes place only after the reduction of the carbonyl group, either to the alcoholic group, or to a methylene group [5S]. [Pg.113]

While the reduction of amides to aldehydes competes successfully with other synthetic routes leading to aldehydes, reduction of amides to alcohols is only exceptionally used for preparative purposes. One such example is the conversion of trifluoroacetamide to trifluoroethanol in 76.5% yield by catalytic hydrogenation over platinum oxide at 90° and 105 atm [7770]. [Pg.166]

L-Mannitol has been prepared by the reduction of L-mannosaccharo-dilactone or L-mannose. By far the most convenient procedure is that used by Baer and Fischer for their preparation of L-glyceraldehyde by the oxidative cleavage of l,2 5,6-diisopropylidene-L-mannitol with lead tetraacetate. L-Arabinose was converted to L-mannonolactone by the cyanohydrin synthesis and this was hydrogenated over platinum oxide to the desired L-mannitol. High hydrogen pressures, rather than low as usually employed with this catalyst, were used. [Pg.216]

In a similar manner, coccinelline (99) and precoccinelline (100) have been synthesized from 2,6-lutidine (351) (336,450). Thus, treatment of the monolithium derivative (153) of 351 with P-bromopropionaldehyde dimethylacetal gave an acetal, which was converted to the keto acetal (412) by treatment with phenyllithium and acetonitrile. Reaction of 412 with ethylene glycol and p-toluenesulfonic acid followed by reduction with sodium-isoamyl alcohol gave the cw-piperidine (413). Hydrolysis of 413 with 5% HCl gave the tricyclic acetal (414) which was transformed to a separable 1 1 mixture of the ketones (415 and 416) by treatment with pyrrolidine-acetic acid. Reaction of ketone 416 with methyllithium followed by dehydration with thionyl chloride afforded the rather unstable olefin (417) which on catalytic hydrogenation over platinum oxide in methanol gave precoccinelline (100). Oxidation of 100 with m-chloroperbenzoic acid yielded coccinelline (99) (Scheme 52) (336,450). [Pg.274]

Numerous methods for the synthesis of salicyl alcohol exist. These involve the reduction of salicylaldehyde or of salicylic acid and its derivatives. The alcohol can be prepared in almost theoretical yield by the reduction of salicylaldehyde with sodium amalgam, sodium borohydride, or lithium aluminum hydride by catalytic hydrogenation over platinum black or Raney nickel or by hydrogenation over platinum and ferrous chloride in alcohol. The electrolytic reduction of salicylaldehyde in sodium bicarbonate solution at a mercury cathode with carbon dioxide passed into the mixture also yields saligenin. It is formed by the electrolytic reduction at lead electrodes of salicylic acids in aqueous alcoholic solution or sodium salicylate in the presence of boric acid and sodium sulfate. Salicylamide in aqueous alcohol solution acidified with acetic acid is reduced to salicyl alcohol by sodium amalgam in 63% yield. Salicyl alcohol forms along with -hydroxybenzyl alcohol by the action of formaldehyde on phenol in the presence of sodium hydroxide or calcium oxide. High yields of salicyl alcohol from phenol and formaldehyde in the presence of a molar equivalent of ether additives have been reported (60). Phenyl metaborate prepared from phenol and boric acid yields salicyl alcohol after treatment with formaldehyde and hydrolysis (61). [Pg.293]

Catalytic hydrogenation of isatin and A-methylisatin gave oxindole and jV-methyloxindole,256 while similar reduction of 1-azidoacetylisatin gave 1-aminoacetyloxindole.165 Catalytic hydrogenation over platinum oxide of A-methylisatin and isatin-1-propionic acid gave 70.169 A... [Pg.22]

Benzalacetone oxide and several related substances haw 1 vn hydrogenated over platinum.170 In these instances reduction of the... [Pg.102]

Reduction of 3,4-dihydro-2//-pyrido[l,2-u]pyrimidine (135) with sodium in ethanol191 or by catalytic hydrogenation over platinum(IV) oxide afforded the perhydropyrido[l,2- ]pyrimidine (282).192... [Pg.316]

R. Taylor. We tried the Birch reduction and obtained amino peaks in the ir because amination occurs under the reaction conditions. We tried to get over this problem by hydrogenating over platinum at low pressure, initially in hexane and then in benzene. Benzene must be redistilled first because it contains di-octyl phthalate. Having adopted this precaution, a purple solution was obtained which became bright yellow after 2-3 days. Of course benzene is reduced as well to cyclohexane. Another problem arises because the (hydrogenated) product, although initially soluble in... [Pg.100]

Submission of 1,6-naphthyridine to sodium/ethanol reduction followed by hydrogenation over platinum oxide afforded trawi-decahydro-1,6-naphthyridine (6) in 65% yield (for details, see original).47... [Pg.92]


See other pages where Reduction hydrogenation over platinum is mentioned: [Pg.389]    [Pg.293]    [Pg.135]    [Pg.389]    [Pg.1265]    [Pg.10]    [Pg.39]    [Pg.53]    [Pg.58]    [Pg.70]    [Pg.82]    [Pg.105]    [Pg.107]    [Pg.113]    [Pg.132]    [Pg.160]    [Pg.107]    [Pg.326]    [Pg.343]    [Pg.358]    [Pg.204]    [Pg.339]    [Pg.508]    [Pg.396]    [Pg.130]    [Pg.142]    [Pg.161]   


SEARCH



Hydrogen platinum

Hydrogenation over Platinum

Platinum hydrogenation

Reduction Hydrogenation

Reduction hydrogen

© 2024 chempedia.info