Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction alkenyl halide

In Grignard reactions, Mg(0) metal reacts with organic halides of. sp carbons (alkyl halides) more easily than halides of sp carbons (aryl and alkenyl halides). On the other hand. Pd(0) complexes react more easily with halides of carbons. In other words, alkenyl and aryl halides undergo facile oxidative additions to Pd(0) to form complexes 1 which have a Pd—C tr-bond as an initial step. Then mainly two transformations of these intermediate complexes are possible insertion and transmetallation. Unsaturated compounds such as alkenes. conjugated dienes, alkynes, and CO insert into the Pd—C bond. The final step of the reactions is reductive elimination or elimination of /J-hydro-gen. At the same time, the Pd(0) catalytic species is regenerated to start a new catalytic cycle. The transmetallation takes place with organometallic compounds of Li, Mg, Zn, B, Al, Sn, Si, Hg, etc., and the reaction terminates by reductive elimination. [Pg.125]

Hydrogenolysis of aryl and alkenyl halides and triflates proceeds by the treatment with various hydride sources. The reaction can be explained by the transmetallation with hydride to form palladium hydride, which undergoes reductive elimination. Several boro hydrides are used for this purpose[680], Deuteration of aromatic rings is possible by the reaction of aryl chlorides with NaBD4681]. [Pg.248]

The general mechanism of coupling reactions of aryl-alkenyl halides with organometallic reagents and nucleophiles is shown in Fig. 9.4. It contains (a) oxidative addition of aryl-alkenyl halides to zero-valent transition metal catalysts such as Pd(0), (b) transmetallation of organometallic reagents to transition metal complexes, and (c) reductive elimination of coupled product with the regeneration of the zero-valent transition metal catalyst. [Pg.483]

Transition metal complexes that are easy to handle and store are usually used for the reaction. The catalytically active species such as Pd(0) and Ni(0) can be generated in situ to enter the reaction cycle. The oxidative addition of aryl-alkenyl halides can occur to these species to generate Pd(II) or Ni(II) complexes. The relative reactivity for aryl-alkenyl halides is RI > ROTf > RBr > RC1 (R = aryl-alkenyl group). Electron-deficient substrates undergo oxidative addition more readily than those electron-rich ones because this step involves the oxidation of the metal and reduction of the organic aryl-alkenyl halides. Usually... [Pg.483]

The general catalytic cycle for the coupling of aryl-alkenyl halides with alkenes is shown in Fig. 9.6. The first step in this catalytic cycle is the oxidative addition of aryl-alkenyl halides to Pd(0). The activity of the aryl-alkenyl halides still follows the order RI > ROTf > RBr > RC1. The olefin coordinates to the Pd(II) species. The coordinated olefin inserts into Pd—R bond in a syn fashion, p-Hydrogen elimination can occur only after an internal rotation around the former double bond, as it requires at least one /I-hydrogen to be oriented syn perpendicular with respect to the halopalladium residue. The subsequent syn elimination yields an alkene and a hydridopalladium halide. This process is, however, reversible, and therefore, the thermodynamically more stable (E)-alkene is generally obtained. Reductive elimination of HX from the hydridopalladium halide in the presence of a base regenerates the catalytically active Pd(0), which can reenter the catalytic cycle. The oxidative addition has frequently assumed to be the rate-determining step. [Pg.486]

The coupling of terminal alkynes with aryl or alkenyl halides catalysed by palladium and a copper co-catalyst in a basic medium is known as the Sonogashira reaction. A Cu(I)-acetylide complex is formed in situ and transmetallates to the Pd(II) complex obtained after oxidative addition of the halide. Through a reductive elimination pathway the reaction delivers substituted alkynes as products. [Pg.178]

Secondary bromides and tosylates react with inversion of stereochemistry, as in the classical SN2 substitution reaction.24 Alkyl iodides, however, lead to racemized product. Aryl and alkenyl halides are reactive, even though the direct displacement mechanism is not feasible. For these halides, the overall mechanism probably consists of two steps an oxidative addition to the metal, after which the oxidation state of the copper is +3, followed by combination of two of the groups from the copper. This process, which is very common for transition metal intermediates, is called reductive elimination. The [R 2Cu] species is linear and the oxidative addition takes place perpendicular to this moiety, generating a T-shaped structure. The reductive elimination occurs between adjacent R and R groups, accounting for the absence of R — R coupling product. [Pg.681]

Nickel-bpy and nickel-pyridine catalytic systems have been applied to numerous electroreductive reactions,202 such as synthesis of ketones by heterocoupling of acyl and benzyl halides,210,213 addition of aryl bromides to activated alkenes,212,214 synthesis of conjugated dienes, unsaturated esters, ketones, and nitriles by homo- and cross-coupling involving alkenyl halides,215 reductive polymerization of aromatic and heteroaromatic dibromides,216-221 or cleavage of the C-0 bond in allyl ethers.222... [Pg.486]

These reactions proceed with retention of double-bond configuration in both the boron derivative and the alkenyl halide. The basic steps involve oxidative addition by the alkenyl halide, transfer of an alkenyl group from boron to palladium, and reductive elimination. [Pg.520]

Aromatic carboxylic acids, a,/f-unsaturated carboxylic acids, their esters, amides, aldehydes and ketones, are prepared by the carbonylation of aryl halides and alkenyl halides. Pd, Rh, Fe, Ni and Co catalysts are used under different conditions. Among them, the Pd-catalysed carbonylations proceed conveniently under mild conditions in the presence of bases such as K2CO3 and Et3N. The extremely high toxicity of Ni(CO)4 almost prohibits the use of Ni catalysts in laboratories. The Pd-catalysed carbonylations are summarized in Scheme 3.9 [215], The reaction is explained by the oxidative addition of halides, and insertion of CO to form acylpalladium halides 440. Acids, esters, and amides are formed by the nucleophilic attack of water, alcohols and amines to 440. Transmetallation with hydrides and reductive elimination afford aldehydes 441. Ketones 442 are produced by transmetallation with alkylmetal reagents and reductive elimination. [Pg.85]

Oxidative addition of aryl and alkenyl halides, and pseudohalides, followed by transmetallation with various metal hydrides generates Ar—M—FI species, reductive elimination of which results in hydrogenolysis of halides. In the main, Pd is used as an efficient catalyst for the hydrogenolysis. [Pg.96]


See other pages where Reduction alkenyl halide is mentioned: [Pg.168]    [Pg.215]    [Pg.227]    [Pg.250]    [Pg.70]    [Pg.201]    [Pg.436]    [Pg.93]    [Pg.555]    [Pg.91]    [Pg.132]    [Pg.395]    [Pg.401]    [Pg.651]    [Pg.253]    [Pg.293]    [Pg.46]    [Pg.56]    [Pg.57]    [Pg.73]    [Pg.96]    [Pg.97]    [Pg.39]    [Pg.5]    [Pg.171]    [Pg.79]    [Pg.768]    [Pg.852]    [Pg.23]    [Pg.270]    [Pg.436]   
See also in sourсe #XX -- [ Pg.12 , Pg.23 ]




SEARCH



Alkenyl halides

Halides reduction

Halides, alkenylation

© 2024 chempedia.info