Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox potential environmental factors affecting

These emission features are associated with the lowest lying MLCT excited state involving a metal-centered dn-type orbital and a k orbital centered on the a-diimine ligand. These transitions appear in the visible range of the spectrum. Noticeably, characteristics of excited states such as emission quantum efficiency, lifetime and, redox potential are greatly affected by the ancillary ligands, solvent polarity and other environmental factors [46]. [Pg.193]

The method of soil suspensions extracts is based on metal desorption/dissolution processes, which primarily depend on the physico-chemical characteristics of the metals, selected soil properties and environmental conditions. Metal adsorption/ desorption and solubility studies are important in the characterization of metal mobility and availability in soils. Metals are, in fact, present within the soil system in different pools and can follow either adsorption and precipitation reactions or desorption and dissolution reactions (Selim and Sparks, 2001). The main factors affecting the relationship between the soluble/mobile and immobile metal pools are soil pH, redox potential, adsorption and exchange capacity, the ionic strength of soil pore water, competing ions and kinetic effects (e.g. contact time) (Evans, 1989 Impelhtteri et al., 2001 McBride, 1994 Sparks, 1995). [Pg.239]

Fluorescence is an extremely sensitive technique but it is not suitable as a general method to estimate natural DOC content due to the reason that it is impossible to find a reference material that would be common for all different natural waters. Characteristic for different fluorescence studies of NOM/DOM is that they may occasionally be somewhat surprising, contradictory, or laboriously explicable. The main reason for this incoherence is that fluorescence measurements are affected by many environmental factors, e.g., type of solution, pH, ionic strength, temperature, redox potential of the medium, and interactions with metal ions and organics. Several corrections are required to obtain a reliable and comparable spectrum, e.g., instrumental factors, Raman water peak, scattering effects (primary and secondary inner filter effects [31,32]), arbitrary fluorescence units should be standardized (dihydrate of quinine sulfate), etc. [Pg.441]

Oxidation-reduction (redox) reactions, along with hydrolysis and acid-base reactions, account for the vast majority of chemical reactions that occur in aquatic environmental systems. Factors that affect redox kinetics include environmental redox conditions, ionic strength, pH-value, temperature, speciation, and sorption (Tratnyek and Macalady, 2000). Sediment and particulate matter in water bodies may influence greatly the efficacy of abiotic transformations by altering the truly dissolved (i.e., non-sorbed) fraction of the compounds — the only fraction available for reactions (Weber and Wolfe, 1987). Among the possible abiotic transformation pathways, hydrolysis has received the most attention, though only some compound classes are potentially hydrolyzable (e.g., alkyl halides, amides, amines, carbamates, esters, epoxides, and nitriles [Harris, 1990 Peijnenburg, 1991]). Current efforts to incorporate reaction kinetics and pathways for reductive transformations into environmental exposure models are due to the fact that many of them result in reaction products that may be of more concern than the parent compounds (Tratnyek et al., 2003). [Pg.324]


See other pages where Redox potential environmental factors affecting is mentioned: [Pg.338]    [Pg.342]    [Pg.177]    [Pg.680]    [Pg.300]    [Pg.868]   
See also in sourсe #XX -- [ Pg.267 ]

See also in sourсe #XX -- [ Pg.267 ]




SEARCH



Environmental factors

Environmental factors affecting

Redox potentials

© 2024 chempedia.info