Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox mediators ferrocene

FIGURE 6-6 Chemical stmcture of some common redox mediators (a) dimethyl ferrocene (b) tetrathiafidvalene (c) tetracyanoquinodimethane (cl) Meldola Blue. [Pg.179]

Schuman et al. have synthesized ferrocene-modified glucose oxidase with the ferrocene derivatives bound via long and flexible chains directly to the outer surface of the enzyme [17]. A peripherally attached redox mediator may accept electrons through either an intramolecular or through an intermo-lecular process. [Pg.349]

However, because of the mostly very slow electron transfer rate between the redox active protein and the anode, mediators have to be introduced to shuttle the electrons between the enzyme and the electrode effectively (indirect electrochemical procedure). As published in many papers, the direct electron transfer between the protein and an electrode can be accelerated by the application of promoters which are adsorbed at the electrode surface [27], However, this type of electrode modification, which is quite useful for analytical studies of the enzymes or for sensor applications is in most cases not stable and effective enough for long-term synthetic application. Therefore, soluble redox mediators such as ferrocene derivatives, quinoid compounds or other transition metal complexes are more appropriate for this purpose. [Pg.96]

Attempts to reduce interference and minimize the effect of variations in oxygen tension have resulted in the development of biosensors with improved linear ranges which operate at lower electrode potentials. They incorporate artificial electron acceptors, called mediators, to transfer electrons from the flavoenzyme (e.g. glucose oxidase) to the electrode and thus are not dependent on oxygen. Ferrocene (bis(i75-cyclopentadienyl)iron) and its derivatives are examples of redox mediators for flavoenzymes. The reaction now becomes... [Pg.193]

As far as the use of ferrocene molecules as amperometric sensors is concerned, they have found wide use as redox mediators in the so-called enzymatic electrodes, or biosensors. These are systems able to determine, in a simple and rapid way, the concentration of substances of clinical and physiological interest. The methodology exploits the fact that, in the presence of enzyme-catalysed reactions, the electrode currents are considerably amplified.61 Essentially it is an application of the mechanism of catalytic regeneration of the reagent following a reversible charge transfer , examined in detail in Chapter 2, Section 1.4.2.5 ... [Pg.194]

Perhaps the original hope for these polymers was that they would act simultaneously as immobilisation matrix and mediator, facilitating electron transfer between the enzyme and electrode and eliminating the need for either O2 or an additional redox mediator. This did not appear to be the case for polypyrrole, and in fact while a copolymer of pyrrole and a ferrocene modified pyrrole did achieve the mediation (43), the response suggested that far from enhancing the charge transport, the polypyrrole acted as an inert diffusion barrier. Since these early reports, other mediator doped polypyrroles have been reported (44t45) and curiosity about the actual role of polypyrrole or any other electrochemically deposited polymer, has lead to many studies more concerned with the kinetics of the enzyme linked reactions and the film transport properties, than with the achievement of a real biosensor. [Pg.17]

Ferrocene modified flexible polymeric electron transfer systems Ferrocene and its derivatives are readily available and commonly used organometalUc redox mediators, so it is quite natural that they were selected first to synthesize mediator modified polymeric electron transfer systems. Siloxane pol5uners are flexible but aqueous insoluble pol3nmers. As previously indicated, a flexible polymer backbone allows close contact between the redox center(s) of the enzyme and the mediator, and the water insoluble property of the polymer prevents not only redox polymer from leaching into bulk media but also prevents enzyme diffusion away fi-om the electrode surface by entrapping it in the polymer/carbon paste matrix. Therefore, ferrocene and... [Pg.349]

Quinone modified polymeric electron transfer systems The redox mechanism of quinone (two electron-proton acceptor/donor) is pH dependent and somewhat more complicated than for ferrocene or osmium (one electron accepter/donor). However, quinones are naturally occurring redox mediators and therefore, many researchers have studied their application to biosensors [107-109]. [Pg.356]

It was also possible to bind the redox active ferrocene mediator directly to the lysine amino groups of the enzyme GPO via an oligo(ethylene glycol) anchor (Fig. 27). The catalytic activity was demonstrated convincingly by cyclic voltammetry (Fig. 28) [140,141]. [Pg.1133]

Bard and co-workers have reported on the attainment of equilibrium between the nanosized particles and an electrode in the presence of a redox mediator [25a]. The study refers to the production of a mediator (methyl viologen radical cation) that reduces water in the presence of colloidal gold and platinum metal catalyst. An electrochemical model based on the assumption that the kinetic properties are controlled by the half-cell reactions is proposed to understand the catalytic properties of the colloidal metals. The same authors have used 15 nm electrodes to detect single molecules using scanning electrochemical microscopy (SECM) [25b]. A Pt-Ir tip of nm size diameter is used along with a ferrocene derivative in a positive feedback mode of SECM. The response has been found to be stochastic and Ear-adaic currents of the order of pA are observed. [Pg.650]

This method was applied to assemble integrated electrically-contacted NAD(P)-dcpcndcnt enzyme electrodes. The direct electrochemical reduction of NAD(l ) cofactors or the electrochemical oxidation of NAD(P)H cofactors are kineticaUy unfavored. Different diffusional redox mediators such as quinones, phenazine, phenoxazine, ferrocene or Os-complexes were employed as electrocatalysts for the oxidation of NAD(P)H cofactors An effective electrocatalyst for the oxidation of the NAD(P)H is pyrroloquinoline quinone, PQQ, (7), and its immobilization on electrode surfaces led to efficient electrocatalytic interfaces (particularly in the presence of Ca ions) for the oxidation of the NAD(P)H cofactors. This observation led to the organization of integrated electrically contacted enzyme-electrodes as depicted in Fig. 3-20 for the organization of a lactate dehydrogenase electrode. [Pg.66]


See other pages where Redox mediators ferrocene is mentioned: [Pg.428]    [Pg.7]    [Pg.405]    [Pg.405]    [Pg.395]    [Pg.428]    [Pg.7]    [Pg.405]    [Pg.405]    [Pg.395]    [Pg.178]    [Pg.86]    [Pg.107]    [Pg.512]    [Pg.44]    [Pg.83]    [Pg.132]    [Pg.2327]    [Pg.2329]    [Pg.62]    [Pg.100]    [Pg.281]    [Pg.10]    [Pg.37]    [Pg.134]    [Pg.212]    [Pg.196]    [Pg.77]    [Pg.270]    [Pg.82]    [Pg.2511]    [Pg.2523]    [Pg.2526]    [Pg.433]    [Pg.2059]    [Pg.271]    [Pg.339]    [Pg.339]    [Pg.1120]    [Pg.1132]    [Pg.12]    [Pg.44]    [Pg.35]    [Pg.36]   
See also in sourсe #XX -- [ Pg.73 , Pg.82 ]




SEARCH



Ferrocene mediator

Redox mediation

Redox mediators

© 2024 chempedia.info