Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox compounds, electrochemistry

The two parts of the present volume contain seventeen chapters written by experts from eleven countries. They cover computational chemistry, structural chemistry by spectroscopic methods, luminescence, thermochemistry, synthesis, various aspect of chemical behavior such as application as synthons, acid-base properties, coordination chemistry, redox behavior, electrochemistry, analytical chemistry and biological aspects of the metal enolates. Chapters are devoted to special families of compounds, such as the metal ynolates and 1,2-thiolenes and, besides their use as synthons in organic and inorganic chemistry, chapters appear on applications of metal enolates in structural analysis as NMR shift reagents, catalysis, polymerization, electronic devices and deposition of metals and their oxides. [Pg.1244]

The use of redox enzymes in organic synthesis, while having a large potential for broad application in the selective formation of high-value compounds, has been limited by the necessity of cofactor regeneration or enzyme reactivation. Electrochemistry offers an attractive and, in principle, simple way to solve this problem because the mass-free electrons are used as regenerating agents. No... [Pg.91]

The first class includes non-redox reactions like isomerisation, dimerisation or oligomerisation of unsaturated compounds, in which the role of the catalyst lies in governing the kinetic and the selectivity of thermodynamically feasible processes. Electrochemistry associated to transition metal catalysis has been first used for that purpose, as a convenient alternative to the usual methods to generate in situ low-valent species which are not easily prepared and/or handled [3]. These reactions are not, however, typical electrochemical syntheses since they are not faradaic they will not be discussed in this review. [Pg.142]

The reducing equivalents transferred can be considered either as hydrogen atoms or electrons. The driving force for the reaction, E, is the reduction/oxidation (redox) potential, and can be measured by electrochemistry it is often expressed in millivolts. The number of reducing equivalents transferred is n. The redox potential of a compound A depends on the concentrations of the oxidized and reduced species [Aqx] and [Area] according to the Nernst equation ... [Pg.253]

ReCl3(PPh3)(benzil)] reacts with bipy and related ligands or terpy to form a number of rhe-nium(III) and rhenium(II) compounds which are useful precursors for the synthesis of lower-valent rhenium complexes. " Thus, reduction of [Re(bipy)3][PF6]2 with zinc amalgam results in the rhenium(I) compound [Re(bipy)3][PF6] in excellent yields. The corresponding terpyridyl bis-chelate [Re(terpy)2][PF6] has been prepared in a similar manner. " The electrochemistry of the products provides a convenient measure of the chemical reactivity associated with the redox processes. Thus, the one-electron oxidation of [Re(bipy)3]" is reversible at -0.33 V, whereas the Re"/Re" redox couple is irreversible and occurs at relatively low potentials (-1-0.61 V) which is consistent with the instability of [Re(bipy)3] + in solution. However, in the presence of a small coordinating molecule such as CNBu, oxidation to the rhenium(III) state is readily available by the formation of seven-coordinate complexes of the composition [Re(bipy)3(L)]. " ... [Pg.358]

A number of nitrogen heterocyclic, aromatic compounds, riboflavin 26, folic acid 27a and biopterin 27b, isolated from natural sources, are related in structure to natural redox enzyme cofactors. The electrochemistry of these and related compounds has been studied extensively. [Pg.252]

This review describes electrochemical reactions of hydroxylamines, oximes and hydroxamic acids. In addition, utilization of hydroxylamines and hydroxamic acids as redox mediators are shown. Since the electroorganic chemistry of hydroxylamines, oximes and hydroxamic acids is rather a minor area in the electrochemistry of organic compounds, the reader is advised to refer to texts which are written for organic chemists unfamiliar with the electroorganic chemistry. [Pg.499]

The electrochemistry of Re and Tc complexes is frequently compared. Rhenium compounds are more difhcult to reduce in a given oxidation state. Comparison of values from Table 1 of Sect. 16.2 and Table 1 of Sect. 16.3 at identical ligand composition indicates that Re potentials are 0.2-0.6V more negative than those ofTc, with the smaller differences occurring more frequently in the lower oxidation states. Lever constructed an electrochemical parameterization scheme on the basis of the ligand additivity principles for 119 Re redox couples [37]. The results are shown in Fig. 4. The lines for the Re / , Re / , and Re / couples are not as cleanly parallel as they are for Tc v/ Tc / , and Tc / (Fig. 2 of Sect. 16.2). Moreover, two lines are apparent for... [Pg.450]

The electrochemical processes involving Prussian blue and organic dyes studied above can be taken as examples of solid state redox processes involving transformation of a one solid compound into another one. This kind of electrochemical reactions are able to be used for discerning between closely related organic dyes. As previously described, the electrochemistry of solids that are in contact with aqueous electrolytes involves proton exchange between the solid and the electrolyte, so that the electrochemical reaction must in principle be confined to a narrow layer in the external surface of the solid particles. Eventually, however, partial oxidative or reductive dissolution processes can produce other species in solution able to react with the dye. [Pg.51]

Another important consideration for electrochemical studies is the choice of electrolyte, the ionic compound that is added to maintain electroneutrality and provide a means of charge flow through solution. Because at least one of the oxidation states of the host will be charged, it is possible that ion-ion interactions will play a role in the observed electrochemistry. Indeed, this is useful if the objective is to design a redox-dependent ion receptor, but it can be an interference if the guest is neutral. [Pg.14]


See other pages where Redox compounds, electrochemistry is mentioned: [Pg.143]    [Pg.117]    [Pg.339]    [Pg.465]    [Pg.339]    [Pg.245]    [Pg.125]    [Pg.150]    [Pg.44]    [Pg.62]    [Pg.75]    [Pg.244]    [Pg.341]    [Pg.76]    [Pg.916]    [Pg.1219]    [Pg.561]    [Pg.566]    [Pg.569]    [Pg.50]    [Pg.542]    [Pg.406]    [Pg.70]    [Pg.94]    [Pg.207]    [Pg.229]    [Pg.211]    [Pg.126]    [Pg.181]    [Pg.389]    [Pg.588]    [Pg.635]    [Pg.650]    [Pg.948]    [Pg.1055]    [Pg.1056]    [Pg.1073]    [Pg.283]   
See also in sourсe #XX -- [ Pg.299 ]




SEARCH



REDOX COMPOUNDS

© 2024 chempedia.info