Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rebinding

Figure C3.1.7. Time-resolved optical absorjDtion data for the Soret band of photo lysed haemoglobin-CO showing six first-order (or pseudo-first-order) relaxation phases, I-VI, on a logaritlimic time scale extending from nanoseconds to seconds. Relaxations correspond to geminate and diffusive CO rebinding and to intramolecular relaxations of tertiary and quaternary protein stmcture. (From Goldbeck R A, Paquette S J, Bjorling S C and Kliger D S 1996 Biochemistry 35 8628-39.)... Figure C3.1.7. Time-resolved optical absorjDtion data for the Soret band of photo lysed haemoglobin-CO showing six first-order (or pseudo-first-order) relaxation phases, I-VI, on a logaritlimic time scale extending from nanoseconds to seconds. Relaxations correspond to geminate and diffusive CO rebinding and to intramolecular relaxations of tertiary and quaternary protein stmcture. (From Goldbeck R A, Paquette S J, Bjorling S C and Kliger D S 1996 Biochemistry 35 8628-39.)...
Figure 14.12 The swinging cross-bridge model of muscle contraction driven by ATP hydrolysis, (a) A myosin cross-bridge (green) binds tightly in a 45 conformation to actin (red), (b) The myosin cross-bridge is released from the actin and undergoes a conformational change to a 90 conformation (c), which then rebinds to actin (d). The myosin cross-bridge then reverts back to its 45° conformation (a), causing the actin and myosin filaments to slide past each other. This whole cycle is then repeated. Figure 14.12 The swinging cross-bridge model of muscle contraction driven by ATP hydrolysis, (a) A myosin cross-bridge (green) binds tightly in a 45 conformation to actin (red), (b) The myosin cross-bridge is released from the actin and undergoes a conformational change to a 90 conformation (c), which then rebinds to actin (d). The myosin cross-bridge then reverts back to its 45° conformation (a), causing the actin and myosin filaments to slide past each other. This whole cycle is then repeated.
For determining the adsorption isotherm, the equilibrium concentrations of bound and free template must be reliably measured within a large concentration interval. Since the binding sites are part of a solid, this experiment is relatively simple and can be carried out in a batch equilibrium rebinding experiment or by frontal analysis. [Pg.163]

Bockris and Parry-Jones were the first to carry out experiments with a pendulum to measure the friction between a wetted substrate and the pivot upon which the pendulum swung. It should be noted that Rebinder and Wenstrom199 used such a device for an objective similar to that of Bockris and Parry-Jones, but they claimed that the characteristics of the pendulum oscillations reflected the hardness of the solid surface. The plastic breakdown determining this would be a function of v and this is a potential-dependent value.100, 01 More extensive determinations were made later by Bockris and Argade200 the theoretical treatment was given by Bockris and Sen.201 In the absence of adjustable parameters in the theory, a good agreement between theory and experimental data was assumed.201 The studies by Bockris and Parry-Jones indicated that the... [Pg.40]

Reb Rebinder, P.A., Venstrem, E.K. Acta Physicochim. URSS 19 (1944) 36. [Pg.437]

Insulin and other growth factors result in the phosphorylation of BP-1 at five unique sites. Phosphorylation of BP-1 results in its dissociation from 4E, and it cannot rebind until critical sites are dephosphorylated. The protein kinase responsible has not been identified, but it appears to be different from the one that phos-phorylates 4E. A kinase in the mammalian target of rapamycin (mTOR) pathway, perhaps mTOR itself, is involved. These effects on the activation of 4E explain in part how insuhn causes a marked posttranscriptional... [Pg.367]

In the kinetic scheme of Figure 8.2C, we see that once the active species is formed, it can go on to inactivate the enzyme directly or be released into solution. If the active species formed is a good affinity label (i.e., is highly electrophilic), there is a chance that this species will rebind and inactivate the enzyme as an affinity label. To be classified as a mechanism-based inactivator, the active species must be demonstrated to directly inactivate the enzyme while still bound, without reliance on dissociation from the EA complex. [Pg.232]

Step I Template release Step 2 T emplate rebinding ... [Pg.189]

The non-cleavage pathway would remove most cohesin during prophase/ pro-metaphase by an as yet obscure mechanism. This pathway could involve phosphorylation of a cohesin subunit by mitotic protein kinases, because vertebrate cohesins rebind to chromatin in telophase when mitotic kinases are inactivated and chromosomes decondense (Losada et al 1998). The dissociation of cohesin from chromatin during prophase coincides with, but does not depend on, the association of condensin with chromosomes. This first phase of cohesin removal may be crucial (possibly along with the arrival of... [Pg.125]

Fig. 1. Preparation of configurational biomimetic imprinted networks for molecular recognition of biological substrates. A Solution mixture of template, functional monomer(s) (triangles and circles), crosslinking monomer, solvent, and initiator (I). B The prepolymerization complex is formed via covalent or noncovalent chemistry. C The formation of the network. D Wash step where original template is removed. E Rebinding of template. F In less crosslinked systems, movement of the macromolecular chains will produce areas of differing affinity and specificity (filled molecule is isomer of template). Fig. 1. Preparation of configurational biomimetic imprinted networks for molecular recognition of biological substrates. A Solution mixture of template, functional monomer(s) (triangles and circles), crosslinking monomer, solvent, and initiator (I). B The prepolymerization complex is formed via covalent or noncovalent chemistry. C The formation of the network. D Wash step where original template is removed. E Rebinding of template. F In less crosslinked systems, movement of the macromolecular chains will produce areas of differing affinity and specificity (filled molecule is isomer of template).
Fig. 5. Flash photolysis of (PNP)CoCO leading to a triplet three-coordinate cobalt species, with slow rebinding of carbon monoxide (96). Fig. 5. Flash photolysis of (PNP)CoCO leading to a triplet three-coordinate cobalt species, with slow rebinding of carbon monoxide (96).

See other pages where Rebinding is mentioned: [Pg.2826]    [Pg.199]    [Pg.552]    [Pg.153]    [Pg.155]    [Pg.161]    [Pg.169]    [Pg.177]    [Pg.198]    [Pg.442]    [Pg.442]    [Pg.443]    [Pg.225]    [Pg.230]    [Pg.86]    [Pg.8]    [Pg.277]    [Pg.152]    [Pg.166]    [Pg.227]    [Pg.232]    [Pg.253]    [Pg.225]    [Pg.165]    [Pg.167]    [Pg.173]    [Pg.181]    [Pg.189]    [Pg.1167]    [Pg.48]    [Pg.293]    [Pg.172]    [Pg.155]    [Pg.126]    [Pg.95]    [Pg.95]    [Pg.101]   
See also in sourсe #XX -- [ Pg.369 , Pg.512 ]




SEARCH



Adsorption-desorption kinetics in batch rebinding experiments

Batch rebinding

Batch rebinding experiments

Covalent rebinding

Equilibrium batch rebinding

Photosystem rebinding

Rebinder

Rebinder effect

Rebinder number

Rebinding selectivity

© 2024 chempedia.info