Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pellet-type reactor

In the steady-state operation of the OXITOX reactor, pelletized solid of catalytieally aetivated sodium earbonate slides down a Silo type reaetor. Counter-current to the solid flow, the polluted air rises through the sliding bed of solids. At reaction temperature the following reaetion oecurs ... [Pg.170]

One step closer to up-scaling to industrial environments is the multiple-bead reactor shown in Fig. 4.9. Here pellet-type catalyst carriers, so-called beads, are positioned in square containers. The beads are made of alumina and are 1 mm in diameter. Gases are passed over these beads through microstructured pore membranes in the cover and the base plate of the containers. [Pg.96]

Reactor 15 [R 15] Multiple-bead Pellet-type Catalyst Carrier Reactor... [Pg.452]

Being in a way the link between pellet-type reactors and well-type reactors, Klein et al. presented a multiple-bead reactor [74] in combination with a split and pool synthesis. The reactor shown in Figure 3.43 consists of pellet-type catalyst carriers, so-called beads, which are positioned in square containers. [Pg.452]

In our discussion of surface reactions in Chapter 11 we assumed that each point in the interior of the entire catalyst surface was accessible to the same reactant concentration. However, where the reactants diffuse into the pores within the catalyst pellet, the concentration at the pore mouth will be higher than that inside the pore, and we see that the entire catalytic surface is not accessible to the same concentration. To account for variations in concentration throughout the pellet, we introduce a parameter known as the effectiveness factor. In this chapter we will develop models for diffusion and reaction in two-phase systems, which include catalyst pellets and CVD reactors. The types of reactors discussed in this chapter will include packed beds, bubbling fluidized beds, slurry reactors, and trickle beds. After studying this chapter you will be able to describe diffusion and reaction in two- and three-phase systems, determine when internal pore diffusion limits the overall rate of reaction, describe how to go about eliminating this limitation, and develop models for systems in which both diffusion and reaction play a role (e.g., CVD). [Pg.738]

Small thermal-spectmm reactors of long refuelling interval using uranium dioxide pellet type fuel derate their core power density (kW(th)/litre) and specific power (kW(th)/kg compared to commercial LWRs, thereby increasing fissile specific inventory ... [Pg.98]

The entire QSL process takes place in a single reactor as shown in Figure 6 (15). The reactor consists of an almost horizontal, refractory-lined cylinder, which can be tilted by 90° when operation is intermpted. Concentrates, fluxes, recirculated flue dust, and normally a small amount of coal, depending on the type of concentrate, are pelletized. The pelletizer ensures that the raw materials are mixed to the required degree of uniformity. [Pg.38]

Two modifications of the duidized-bed reactor technology have been developed. In the first, two gas-phase duidized-bed reactors coimected to one another have been used by Mobil Chemical Co. and Union Carbide to manufacture HDPE resins with broad MWD (74,75). In the second development, a combination of two different reactor types, a small slurry loop reactor followed by one or two gas-phase duidized-bed reactors (Sphetilene process), was used by Montedision to accommodate a Ziegler catalyst with a special particle morphology (76,77). This catalyst is able to produce PE resins in the form of dense spheres with a diameter of up to 4—5 mm such resins are ready for shipping without pelletization. [Pg.385]

Figure B.l. (Top) Typical reactor designs used in electrochemical promotion studies singlechamber design (left) and fuel cell type design (right). (Bottom) Typical apparatus for electrochemical promotion studies using a three-pellet single chamber reactor. Figure B.l. (Top) Typical reactor designs used in electrochemical promotion studies singlechamber design (left) and fuel cell type design (right). (Bottom) Typical apparatus for electrochemical promotion studies using a three-pellet single chamber reactor.
Two types of continuous flow solid oxide cell reactors are typically used in electrochemical promotion experiments. The single chamber reactor depicted in Fig. B.l is made of a quartz tube closed at one end. The open end of the tube is mounted on a stainless steel cap, which has provisions for the introduction of reactants and removal of products as well as for the insertion of a thermocouple and connecting wires to the electrodes of the cell. A solid electrolyte disk, with three porous electrodes deposited on it, is appropriately clamped inside the reactor. Au wires are normally used to connect the catalyst-working electrode as well as the two Au auxiliary electrodes with the external circuit. These wires are mechanically pressed onto the corresponding electrodes, using an appropriate ceramic holder. A thermocouple, inserted in a closed-end quartz tube is used to measure the temperature of the solid electrolyte pellet. [Pg.552]

A small-scale PROX system was manufactured in a type of heat exchanger using non-pellet catalyst. Pt-Ru catalyst screened was impregnated on the support sheet. The support sheet was made by coating y-AlaOs on porous SUS-mesh plate (thickness 1.0 mm). The surface area of the catalyst sheet was 96 mVg. The catalyst sheet was applied to a heat exchanger type reactor of PROX as shown in Fig. 2. The PROX reactor was manufactured as a unit module and tested. Fig. 3 is the test-set of the PROX. Air was applied as the coolant. [Pg.626]

For a specific comparison of the two different reactor types, channels of 300 pm diameter were considered. The equivalent pellet size for that case is 675 pm. As a characteristic quantity, the conversion at the reactor exits was computed for different flow velocities and a range of Damkohler numbers spanning three orders of magnitude. The results for the two different reactor types obtained in such a way were practically indistinguishable. This suggests that the different reactors considered in this study are equivalent as far as chemical conversion is concerned. [Pg.34]


See other pages where Pellet-type reactor is mentioned: [Pg.625]    [Pg.338]    [Pg.91]    [Pg.446]    [Pg.78]    [Pg.192]    [Pg.454]    [Pg.192]    [Pg.69]    [Pg.381]    [Pg.373]    [Pg.383]    [Pg.399]    [Pg.233]    [Pg.10]    [Pg.521]    [Pg.41]    [Pg.2374]    [Pg.164]    [Pg.225]    [Pg.1258]    [Pg.868]    [Pg.97]    [Pg.137]    [Pg.552]    [Pg.310]    [Pg.625]    [Pg.514]    [Pg.257]    [Pg.263]    [Pg.264]    [Pg.273]    [Pg.573]    [Pg.233]    [Pg.362]   
See also in sourсe #XX -- [ Pg.91 ]




SEARCH



Pellet reactors

Pellet-type and Ceramic Reactors

Reactor types

Reactors reactor types

© 2024 chempedia.info