Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactivity of carbenes

From the point of view of both synthetic and mechanistic interest, much attention has been focused on the addition reaction between carbenes and alkenes to give cyclopropanes. Characterization of the reactivity of substituted carbenes in addition reactions has emphasized stereochemistry and selectivity. The reactivities of singlet and triplet states are expected to be different. The triplet state is a diradical, and would be expected to exhibit a selectivity similar to free radicals and other species with unpaired electrons. The singlet state, with its unfilled p orbital, should be electrophilic and exhibit reactivity patterns similar to other electrophiles. Moreover, a triplet addition [Pg.905]

Reactions Involving Carbocations, Carbenes, and Radicals as Reactive Intermediates [Pg.906]

Transition structure for concerted singlet carbene addition [Pg.906]

The radical versus electrophilic character of triplet and singlet carbenes also shows up in relative reactivity patterns given in Table 10.1. The relative reactivity of singlet dibromocarbene toward alkenes is more similar to electrophiles (bromination, epoxidation) than to radicals ( CCl,). [Pg.906]

Carbene reactivity is strongly affected by substituents.117 Various singlet carbenes have been characterized as nucleophilic, ambiphilic, and electrophilic as shown in Table 10.2 This classification is based on relative reactivity toward a series of both nucleophilic alkenes, such as tetramethylethylene, and electrophilic ones, such as acrylonitrile. The principal structural feature that determines the reactivity of the carbene is the ability of the substituent to act as an electron donor. For example, dimethoxycarbene is devoid of electrophilicity toward alkenes because of electron donation by the methoxy groups.118 [Pg.906]


They concluded that the reactivity of carbenes toward CO2 is determined by their philicity (more nucleophilic carbenes are more reactive) and that carbene spin state interestingly has little effect. Kovacs and Jackson have suggested that this reactivity pattern may be explained by a nonequilibrium surface crossing mechanism. ... [Pg.190]

Structure and reactivity of carbenes having aryl substituents, 22, 311... [Pg.340]

The reactivities of carbenes toward alkenes have been correlated with the inductive and resonance effects of the carbene substituents, log k — a Eat + fcEaR+ + c.m Analogous correlations cannot be obtained for the reaction rates of carbenes with alcohols, neither with the substituent parameters used by Moss,109 nor with related sets.110 In particular, the substituent parameters do not describe the strong, rate-enhancing effect of aryl groups. For a detailed analysis, see the discussion of proton affinities (Section V.A). [Pg.32]

Structure and Reactivity of Carbenes having Aryl Substituents... [Pg.311]

A second way to overcome the high reactivity of carbenes and so permit their direct observation is to conduct an experiment on a very short timescale. In the past five years this approach has been applied to a number of aromatic carbenes. These experiments rely on the rapid photochemical generation of the carbene with a short pulse of light (the pump beam), and the detection of the optical absorption (or emission) of the carbene with a probe beam. These pump-probe experiments can be performed on timescales ranging from picoseconds to milliseconds. They provide an important opportunity absent from the low temperature experiments, namely, the capability of studying chemical reactions of the carbene under normal conditions. Before proceeding to discuss the application of these techniques to aromatic carbenes, a few details illuminating the nature of the data obtained and the limitations of the experiment need to be introduced. [Pg.324]

From an historical point of view, the earliest indication of spin-selective reactivity of carbenes was exhibited by the stereochemistry of the cyclo-propanation reaction. The Skell Hypothesis (Skell and Woodworth, 1956) suggests that a spin-prohibition requires the addition of a triplet carbene to an olefin to occur in at least two steps. In turn, the obligatory formation of an... [Pg.329]

However, another study concluded that the changes of the hydrogen-bond stability may be important in biological processes. For these, the influence of local electric fields created by Li+, Na+, and Mg2+ ions on the properties and reactivity of hydrogen bonds in HF and HC1 dimer has been carried out by means of ab initio self-consistent field (SCF) method [33]. A few years later, the effect of intensity and vector direction of the external electric field on activation barriers of unimole-cular reactions were studied using the semiempirical MINDO/3 method [34]. However, both semiempirical and ab initio calculations were performed to study the multiplicity change for carbene-like systems in external electric fields of different configurations (carbene and silylene) and the factor that determines the multiplicity and hence the reactivity of carbene-like structures is the nonuniformity of the field [35]. [Pg.368]

Fig. 1.1. Reactivity of carbene complexes towards electrophiles (E+) and nucleophiles (Nu ). Fig. 1.1. Reactivity of carbene complexes towards electrophiles (E+) and nucleophiles (Nu ).
The reactivity of carbenes is strongly influenced by the electronic properties of their substituents. If an atom with a lone pair (e.g. O, N, or S) is directly bound to the carbene carbon atom, the electronic deficit at the carbene will be compensated to some extent by electron delocalization, resulting in stabilization of the reactive species. If both substituents are capable of donating electrons into the empty p orbital of the carbene, isolable carbenes, as e.g. diaminocarbenes (Section 2.1.6), can result. The second way in which carbenes can be stabilized consists in complexation. The shape of the molecular orbitals of carbenes enable them to act towards transition metals as a-donors and 71-acceptors. The chemical properties of the resulting complexes will also depend on the electronic properties of the metallic fragment to which the carbene is bound. Particularly relevant for the reactivity of carbene complexes are the ability of the metal to accept a-electrons from the carbene, and its capacity for back-donation into the empty p orbital of the carbene. [Pg.2]

Fig. 1.3. Reactivity of carbene complexes as a function of the electronic interaction between metal and carbene. Fig. 1.3. Reactivity of carbene complexes as a function of the electronic interaction between metal and carbene.
This reactivity pattern is certainly unexpected. Why should low-valent complexes react as electrophiles and highly oxidized complexes be nucleophilic Numerous calculations on model compounds have provided possible explanations for the observed chemical behavior of both Fischer-type [3-8] and Schrock-type [9-17] carbene complexes. In simplified terms, a rationalization of the reactivity of carbene complexes could be as follows. The reactivity of non-heteroatom-stabilized carbene complexes is mainly frontier-orbital-controlled. The energies of the HOMO and LUMO of carbene complexes, which are critical for the reactivity of a given complex, are determined by the amount of orbital overlap and by the energy-difference between the empty carbene 2p orbital and a d orbital (of suitable symmetry) of the group L M. [Pg.3]


See other pages where Reactivity of carbenes is mentioned: [Pg.1000]    [Pg.57]    [Pg.59]    [Pg.368]    [Pg.251]    [Pg.905]    [Pg.930]    [Pg.313]    [Pg.315]    [Pg.317]    [Pg.319]    [Pg.321]    [Pg.323]    [Pg.325]    [Pg.327]    [Pg.329]    [Pg.331]    [Pg.333]    [Pg.335]    [Pg.337]    [Pg.339]    [Pg.341]    [Pg.343]    [Pg.345]    [Pg.347]    [Pg.349]    [Pg.350]    [Pg.351]    [Pg.353]    [Pg.355]    [Pg.357]    [Pg.359]    [Pg.361]    [Pg.760]    [Pg.1]   
See also in sourсe #XX -- [ Pg.3 , Pg.59 ]




SEARCH



Carbene reactivity

Carbene, reactive

Carbenes reactivity

Of carbenes

Reactivity of Carbene Complexes

Reactivity of transition metal-carbene complexes

Structure and reactivity of carbenes

Structure and reactivity of carbenes having

Structure and reactivity of carbenes having aryl substituents

The structure and reactivity of aromatic carbenes

© 2024 chempedia.info