Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions with synthesis

Thus, the overall acetaldehyde selectivity approaches 98%. The utility of methyl acetate as an alternative feedstock has been previously illustrated by the reported carbonylation to acetic anhydride ( ) and homologation ( ) to ethyl acetate via reaction with synthesis gas. [Pg.132]

Sulfur dioxide trapped in a stack-gas-scrubbing process can be converted to hydrogen sulfide by reaction with synthesis gas (H2, CO, CH4),... [Pg.438]

Ullman reaction The synthesis of diaryls by the condensation of aromatic halides with themselves or other aromatic halides, with the concomitant removal of halogens by a metal, e.g. copper powder thus bromobenzene gives diphenyl. The reaction may be extended to the preparation of diaryl ethers and diaryl thio-ethers by coupling a metal phenolate with an aryl halide. [Pg.411]

To recognize the different levels of representation of biochemical reactions To understand metabolic reaction networks To know the principles of retrosynthetic analysis To understand the disconnection approach To become familiar with synthesis design systems... [Pg.542]

The breaking of a strategic bond and the generation of synthesis precursors defines a synthesis reaction. In the simplest case, the reaction is already known from literature. In most cases, however, the rcaaion step obtained has to be generalised in order to find any similar and successfully performed reactions with a similar substituent pattern or with a similar rearrangement of bonds. One way of generalizing a reaction is to identify the reaction center and the reaction substructure of the reaction. This defines a reaction type. [Pg.571]

In a reaction, bonds are broken and made. In some cases free electrons are shifted also. The rcaciion center contains all the bond.s being broken or made during the reaction as well as all the electron rearrangement processes. The reaction uhstme-ture is the structural subunit of atoms and bonds around the reaction center that has to be present in a compound in order for the reaction to proceed in the foi"ward (synthesis) direction (Figure 10,3-32). Both characteristics of a reaction can be used to. search for reactions with an identical reaction center and reaction substructure but with different structural units beyond the reaction substructure. For example, this can be achieved by searching in a reaction database. [Pg.571]

The formation of the above anions ("enolate type) depend on equilibria between the carbon compounds, the base, and the solvent. To ensure a substantial concentration of the anionic synthons in solution the pA" of both the conjugated acid of the base and of the solvent must be higher than the pAT -value of the carbon compound. Alkali hydroxides in water (p/T, 16), alkoxides in the corresponding alcohols (pAT, 20), sodium amide in liquid ammonia (pATj 35), dimsyl sodium in dimethyl sulfoxide (pAT, = 35), sodium hydride, lithium amides, or lithium alkyls in ether or hydrocarbon solvents (pAT, > 40) are common combinations used in synthesis. Sometimes the bases (e.g. methoxides, amides, lithium alkyls) react as nucleophiles, in other words they do not abstract a proton, but their anion undergoes addition and substitution reactions with the carbon compound. If such is the case, sterically hindered bases are employed. A few examples are given below (H.O. House, 1972 I. Kuwajima, 1976). [Pg.10]

In the synthesis of commercial sulfur-heterocycles two interesting reactions are used (i) diphenylamines may be connected by a sulfur bridge in the orfho-positions (ii) the amino grouping of sulfonamides undergoes condensation reactions with neighboring imino- and amide groups. [Pg.309]

Another synthesis avoids the isolation of 6-APA and starts directly with penidllin G. Reaction with chloromethyl pivalate gives its pivaloyloxymethyl ester. This reacts with PCI5 to an imidoyl chloride which may be solvolyzed with propanol. The add chloride of (R)-... [Pg.311]

Alkynes undergo stoichiometric oxidative reactions with Pd(II). A useful reaction is oxidative carboiiyiation. Two types of the oxidative carbonyla-tion of alkynes are known. The first is a synthesis of the alkynic carbox-ylates 524 by oxidative carbonylation of terminal alkynes using PdCN and CuCh in the presence of a base[469], Dropwise addition of alkynes is recommended as a preparative-scale procedure of this reation in order to minimize the oxidative dimerization of alkynes as a competitive reaction[470]. Also efficient carbonylation of terminal alkynes using PdCU, CuCI and LiCi under CO-O2 (1 I) was reported[471]. The reaction has been applied to the synthesis of the carbapenem intermediate 525[472], The steroidal acetylenic ester 526 formed by this reaction undergoes the hydroarylalion of the triple bond (see Chapter 4, Section 1) with aryl iodide and formic acid to give the lactone 527(473],... [Pg.97]

The coupling of alkenylboranes with alkenyl halides is particularly useful for the stereoselective synthesis of conjugated dienes of the four possible double bond isomers[499]. The E and Z forms of vinylboron compounds can be prepared by hydroboration of alkynes and haloalkynes, and their reaction with ( ) or (Z)-vinyl iodides or bromides proceeds without isomerization, and the conjugated dienes of four possible isomeric forms can be prepared in high purity. [Pg.221]

The protected nucleoside-3-phosphoramidite monomer units such as 671 are used in the solid-phase oligonucleotide synthesis. In the 60mer synthesis, 104 allylic protective groups are removed in almost 100% overall yield by the single Pd-catalyze reaction with formic acid and BuNH2[432], N,(9-protection of uridine derivatives was carried out under pha.se-transfer conditions[433]. [Pg.382]

One route to o-nitrobenzyl ketones is by acylation of carbon nucleophiles by o-nitrophenylacetyl chloride. This reaction has been applied to such nucleophiles as diethyl malonatc[l], methyl acetoacetate[2], Meldrum s acid[3] and enamines[4]. The procedure given below for ethyl indole-2-acetate is a good example of this methodology. Acylation of u-nitrobenzyl anions, as illustrated by the reaction with diethyl oxalate in the classic Reissert procedure for preparing indolc-2-carboxylate esters[5], is another route to o-nitrobenzyl ketones. The o-nitrophenyl enamines generated in the first step of the Leimgruber-Batcho synthesis (see Section 2.1) are also potential substrates for C-acylation[6,7], Deformylation and reduction leads to 2-sub-stituted indoles. [Pg.14]


See other pages where Reactions with synthesis is mentioned: [Pg.429]    [Pg.90]    [Pg.90]    [Pg.429]    [Pg.90]    [Pg.90]    [Pg.138]    [Pg.158]    [Pg.258]    [Pg.225]    [Pg.226]    [Pg.276]    [Pg.282]    [Pg.318]    [Pg.20]    [Pg.127]    [Pg.311]    [Pg.370]    [Pg.81]    [Pg.113]    [Pg.121]    [Pg.122]    [Pg.4]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 , Pg.5 , Pg.6 ]




SEARCH



© 2024 chempedia.info