Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions, noncatalytic volume reaction model

Several models that describe gas-solid noncatalytic reactions are summarized in Table 7-7. The first two, the sharp interface and volume reaction models, are pseudo-homogeneous, form part of the class of shrinking core models, and can be treated by using the Thiele modulus and effectiveness factor concept. The last three are heterogeneous models. [Pg.23]

FIG 7-12 Typical concentration profiles for the volume reaction model. [From Wen, Noncatalytic Heterogeneous Solid-Fluid Reaction Models, Ind. Eng. Chem. 60(9) 34-54 (1968), Fig. 3.]... [Pg.25]

With these we enlist the two fundamental approaches to the noncatalytic gas-solid reaction systems The shrinking core model and volume reaction model. In the volnme reaction model, the solid is porous, the fluid easily diffuses in or ont of the solid, such that the reaction can take place homogeneously everywhere in the solid. On the other hand, with the shrinking core model (SCM), also called the sharp interface model (SIM), there is a sharp interface between the unreacted core and reacted shell of the particles. [Pg.200]

For noncatalytic homogeneous reactions, a tubular reactor is widely used because it cai handle liquid or vapor feeds, with or without phase change in the reactor. The PFR model i usually adequate for the tubular reactor if the flow is turbulent and if it can be assumed tha when a phase change occurs in the reactor, the reaction takes place predominantly in one o the two phases. The simplest thermal modes are isothermal and adiabatic. The nonadiabatic nonisothermal mode is generally handled by a specified temperature profile or by heat transfer to or from some specified heat source or sink and a corresponding heat-transfer area and overall heat transfer coefficient. Either a fractional conversion of a limiting reactant or a reactoi volume is specified. The calculations require the solution of ordinary differential equations. [Pg.214]


See other pages where Reactions, noncatalytic volume reaction model is mentioned: [Pg.512]    [Pg.165]    [Pg.166]   
See also in sourсe #XX -- [ Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 , Pg.12 , Pg.13 , Pg.14 , Pg.15 , Pg.16 , Pg.17 , Pg.18 , Pg.19 , Pg.20 , Pg.21 , Pg.22 , Pg.23 , Pg.24 ]




SEARCH



Noncatalytic reactions

Reaction volume

Volume model

© 2024 chempedia.info