Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions dynamic kinetic resolution

F. F. Huerta and J. E. Backvall, Enantio-selective synthesis of beta-hydroxy acid derivatives via a one-pot aldol reaction -dynamic kinetic resolution, Org. Lett. 2001, 3(8), 1209-1212. [Pg.536]

The kinetic resolution of racemate 134 possessing axial chirality was examined with the chiral arsonium ylide 30, which afforded the non-racemic atropisomer 135 with a satisfactory de of up to 76% [84]. In this reaction, dynamic kinetic resolution was operative to some extent vide infra). The same kind of kinetic resolution... [Pg.320]

Hydantoinases belong to the E.C.3.5.2 group of cyclic amidases, which catalyze the hydrolysis of hydantoins [4,54]. As synthetic hydantoins are readily accessible by a variety of chemical syntheses, including Strecker reactions, enantioselective hydantoinase-catalyzed hydrolysis offers an attractive and general route to chiral amino acid derivatives. Moreover, hydantoins are easily racemized chemically or enzymatically by appropriate racemases, so that dynamic kinetic resolution with potential 100% conversion and complete enantioselectivity is theoretically possible. Indeed, a number of such cases using WT hydantoinases have been reported [54]. However, if asymmetric induction is poor or ifinversion ofenantioselectivity is desired, directed evolution can come to the rescue. Such a case has been reported, specifically in the production of i-methionine in a whole-cell system ( . coli) (Figure 2.13) [55]. [Pg.39]

The resolution of racemic ethyl 2-chloropropionate with aliphatic and aromatic amines using Candida cylindracea lipase (CCL) [28] was one of the first examples that showed the possibilities of this kind of processes for the resolution of racemic esters or the preparation of chiral amides in benign conditions. Normally, in these enzymatic aminolysis reactions the enzyme is selective toward the (S)-isomer of the ester. Recently, the resolution ofthis ester has been carried out through a dynamic kinetic resolution (DKR) via aminolysis catalyzed by encapsulated CCL in the presence of triphenylphosphonium chloride immobilized on Merrifield resin (Scheme 7.13). This process has allowed the preparation of (S)-amides with high isolated yields and good enantiomeric excesses [29]. [Pg.179]

For most chemical transformations, especially for industrial applications, the yield of 50% cannot be accepted. Since each enantiomer constitutes only 50% of the racemic mixture, the best way to increase the yield of the desired enantiomer is racemization of the unwanted one (Scheme 5.7). This reaction mustproceed simultaneously with the enzymatic kinetic resolution. In order to indicate the dynamic character of such processes, the term dynamic kinetic resolution has been introduced. [Pg.102]

Moreover, it is possible to open racemic azlactones by acyl bond cleavage to form protected amino acids in a dynamic kinetic resolution process. As azlactones suffer a fast racemization under the reaction conditions, eventually all starting material is converted [115]. [Pg.170]

When a reverse procedure was applied, i.e. enzymatic acetylation of racemic 3, formed in situ from the appropriate aldehydes and thiols, the reaction proceeded under the conditions of dynamic kinetic resolution and gave enantiomerically enriched acetates 2 with 65-90% yields and with ees up to 95% (Equation 2). It must be mentioned that the addition of silica proved crucial, as in its absence no racemization of the initially formed substrates 3 occurred and the reaction stopped at the 50% conversion. [Pg.161]

Hydrogen transfer reactions are reversible, and recently this has been exploited extensively in racemization reactions in combination with kinetic resolutions of racemic alcohols. This resulted in dynamic kinetic resolutions, kinetic resolutions of 100% yield of the desired enantiopure compound [30]. The kinetic resolution is typically performed with an enzyme that converts one of the enantiomers of the racemic substrate and a hydrogen transfer catalyst that racemizes the remaining substrate (see also Scheme 20.31). Some 80 years after the first reports on transfer hydrogenations, these processes are well established in synthesis and are employed in ever-new fields of chemistry. [Pg.586]

The next step in the use of transfer hydrogenation catalysts for recycling of the unwanted enantiomer is the dynamic kinetic resolution. This is a combination of two reaction systems (i) the continuous racemization of the alcohol via hydrogen transfer and (ii) the enantioselective protection of the alcohol using a... [Pg.612]

It is important that the catalysts are stable in each other s presence. Typically, kinetic resolution of the reaction is performed with an enzyme, which always will contain traces of water. Hence, MPVO catalysts and water-sensitive transition-metal catalysts cannot be used in these systems. The influence of the amount of the hydrogen acceptor in the reaction mixture during a dynamic kinetic resolution is less pronounced than in a racemization, since the equilibrium of the reaction is shifted towards the alcohol side. [Pg.613]

The reversibility of the reaction can be used to good effect in asymmetric dehydrogenation and dynamic kinetic resolutions (see later for discussion). [Pg.1225]

The hydrogenation of a-amino ketones was also a key step for the synthesis of three more pharma actives (Fig. 37.25). Roche [95] divulged a pilot process involving the hydrogenation/dynamic kinetic resolution of a cyclic a-amino ketone using an optimized MeO-biphep ligand. The Ru-catalyzed reaction was carried out on a 9-kg scale with excellent enantio- and diastereoselectivities, and very... [Pg.1302]

The kinetic resolution using a chiral zirconocene-imido complex 286 took place with high enantioselectivity to result in chiral allenes 287 (up to 98% ee) (Scheme 4.74) [116]. However, a potential drawback of these methods is irreversible consumption of half of the allene even if complete recovery of the desired enantiomer is possible. Dynamic kinetic resolutions avoid this disadvantage in the enantiomer-differentiating reactions. Node et al. transformed a di-(-)-L-menthyl ester of racemic allene-l,3-dicarboxylate [(S)- and (RJ-288] to the corresponding chiral allene dicarbox-ylate (R)-288 by an epimerization-crystallization method with the assistance of a catalytic amount of Et3N (Scheme 4.75) [117]. [Pg.176]

Dynamic kinetic resolution (DKR) is an extension to the kinetic resolution process, in which an enantioselective catalyst is usually used in tandem with a chemoselective catalyst. The chemoselective catalyst is used to racemize the starting material of the kinetic resolution process whilst leaving the product unchanged. As a consequence, the enantioselective catalyst is constantly supplied with fresh fast-reacting enantiomer so that the process can be driven to theoretical yields of up to 100 %. There are special cases where the starting material spontaneously racemizes under the reaction conditions and so a second catalyst is not required. [Pg.34]

Pellissier, H., Recent developments in dynamic kinetic resolution. Tetrahedron, 2008, 64, 1563-1601 Turner, N.J., Enzyme catalysed deracemisation and dynamic kinetic resolution reactions. Curr. Opin. Chem. Biol., 2004, 8, 114-119 Gmber, C.C., Lavandera, I., Faber, K. and Kroutil, W., From a racemate to a single enantiomer deracemisation by stereoinversion. Adv. Synth. Catal., 2006, 348, 1789-1805 Pellissier, H., Dynamic kinetic resolution. Tetrahedron, 2003, 59, 8291-8327 Pmnies, O. and Backvall, J.-E., Combination of enzymes and metal catalysts. A powerful approach in asymmetric catalysis. Chem. Rev., 2003, 103, 3247-3261. [Pg.76]

The one-pot dynamic kinetic resolution (DKR) of ( )-l-phenylethanol lipase esterification in the presence of zeolite beta followed by saponification leads to (R)-l phenylethanol in 70 % isolated yield at a multi-gram scale. The DKR consists of two parallel reactions kinetic resolution by transesterification with an immobilized biocatalyst (lipase B from Candida antarctica) and in situ racemization over a zeolite beta (Si/Al = 150). With vinyl octanoate as the acyl donor, the desired ester of (R)-l-phenylethanol was obtained with a yield of 80 % and an ee of 98 %. The chiral secondary alcohol can be regenerated from the ester without loss of optical purity. The advantages of this method are that it uses a single liquid phase and both catalysts are solids which can be easily removed by filtration. This makes the method suitable for scale-up. The examples given here describe the multi-gram synthesis of (R)-l-phenylethyl octanoate and the hydrolysis of the ester to obtain pure (R)-l-phenylethanol. [Pg.133]

Enzymes may be used either directly for chiral synthesis of the desired enantiomer of the amino acid itself or of a derivative from which it can readily be prepared, or for kinetic resolution. Resolution of a racemate may remove the unwanted enantiomer, leaving the intended product untouched, or else the reaction may release the desired enantiomer from a racemic precursor. In either case the apparent disadvantage is that the process on its own can only yield up to 50% of the target compound. However, in a number of processes the enzyme-catalyzed kinetic resolution is combined with a second process that re-racemizes the unwanted enantiomer. This may be chemical or enzymatic, and in the latter case, the combination of two simultaneous enzymatic reactions can produce a smooth dynamic kinetic resolution leading to 100% yield. [Pg.72]

The reversibility of hydrogen transfer reactions has been exploited for the racemi-zation of alcohols and amines. By coupling the racemization process with an enantioselective enzyme-catalyzed acylation reaction, it has been possible to achieve dynamic kinetic resolution reactions. The combination of lipases or... [Pg.94]

Miscellaneous Reactions Berkessel " has identified peptide-like urea-based bifiinctional organocatalysts for the highly efficient dynamic kinetic resolution of azalactones (Scheme 11.14a). Another selective hydrogen-bonding activation mechanism that enables the addition of pyrroles to ketenes using catalytic quantities of azaferrocene 36 has been introduced by Fu and coworkers (Scheme 11.14b). ° ... [Pg.333]

Three years later. List and coworkers extended their phosphoric acid-catalyzed dynamic kinetic resolution of enoUzable aldehydes (Schemes 18 and 19) to the Kabachnik-Fields reaction (Scheme 33) [56]. This transformation combines the differentiation of the enantiomers of a racemate (50) (control of the absolute configuration at the P-position of 88) with an enantiotopic face differentiation (creation of the stereogenic center at the a-position of 88). The introduction of a new steri-cally congested phosphoric acid led to success. BINOL phosphate (R)-3p (10 mol%, R = 2,6- Prj-4-(9-anthryl)-C H3) with anthryl-substituted diisopropylphenyl groups promoted the three-component reaction of a-branched aldehydes 50 with p-anisidine (89) and di-(3-pentyl) phosphite (85b). P-Branched a-amino phosphonates 88 were obtained in high yields (61-89%) and diastereoselectivities (7 1-28 1) along with good enantioselectivities (76-94% ee) and could be converted into... [Pg.422]

The application of the Hoffmann test """ " confirms configurational stability of these lithium compounds on the microscopic scale at low temperature, indicating that rather thermodynamic than dynamic kinetic resolution is operating at the reaction conditions " . [Pg.1091]


See other pages where Reactions dynamic kinetic resolution is mentioned: [Pg.269]    [Pg.268]    [Pg.268]    [Pg.269]    [Pg.268]    [Pg.268]    [Pg.337]    [Pg.343]    [Pg.115]    [Pg.135]    [Pg.250]    [Pg.340]    [Pg.97]    [Pg.164]    [Pg.253]    [Pg.284]    [Pg.251]    [Pg.327]    [Pg.43]    [Pg.670]    [Pg.697]    [Pg.1151]    [Pg.1240]    [Pg.193]    [Pg.136]    [Pg.77]    [Pg.137]    [Pg.162]    [Pg.90]    [Pg.95]    [Pg.1097]    [Pg.1101]   
See also in sourсe #XX -- [ Pg.263 ]




SEARCH



Dynamic kinetic resolution

Dynamic kinetic resolution reaction scheme

Dynamic resolutions

Kinetic dynamic

Kinetic resolutions dynamic resolution

Kinetics dynamic kinetic resolution

Resolution Reaction

© 2024 chempedia.info