Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface reaction second-order

Note that the rates of product formation and reactant conversion indeed have the dimensions of mol per unit of time, and that these rates are proportional to the number of sites, or, in fact, the amount of catalyst present in the reactor. Also, in the case of a second order reaction, e.g. betv een adsorbed species A and B, we write the rate in the form r = Nk0j 0 by applying the mean-field approximation. Here the rate is proportional to both the total number of sites on the surface and the probability of finding a species A adjacent to a species B on the surface, the latter being proportional to the coverages of A and B. In the mean-field approximation A and B are distributed randomly over the N available sites this only tends to be valid when the adsorbents repel each other. Thus the rate is not r= k(N0/ )(N02,) since the reactants need to be on adjacent sites. Another important consideration is that we want the rate to be linearly proportional to the amount of catalyst in the reactor, in accordance with r = Nk0A0B for a second order surface reaction. [Pg.50]

The rate of the reaction, 2A = Products, is limited by diffusion to the catalyst surface and the rate of the second order surface reaction. Only A is adsorbed appreciably. Given these data, find the rate equation. pa 1.0 1.5 2.0... [Pg.727]

The rate of a gas phase reaction, 2A =s> B, is believed controlled by external diffusion and second order surface reaction with only substance A adsorbed to a substantial extent. The rate of diffusion is rd - 0.9(pg-ps), mol/(h)(kg catalyst)... [Pg.783]

At high Peclet numbers, for an nth-order surface reaction withn=l/2, 1,2, Eq. (5.1.5) was tested in the entire range of the parameter ks by comparing its root with the results of numerical solution of appropriate integral equations for the surface concentration (derived in the diffusion boundary layer approximation) in the case of a translational Stokes flow past a sphere, a circular cylinder, a drop, or a bubble [166, 171, 364], The comparison results for a second-order surface reaction (n = 2) are shown in Figure 5.1 (for n = 1/2 and n = 1, the accuracy of Eq. (5.1.5) is higher than for n = 2). Curve 1 (solid line) corresponds to a second-order reaction (n = 2). One can see that, the maximum inaccuracy is observed for 0.5 < fcs/Shoo < 5.0 and does not exceed 6% for a solid sphere (curve 2), 8% for a circular cylinder (curve 3), and 12% for a spherical bubble (curve 4). [Pg.217]

Figure 5.1. The Sherwood number against the rate constant of second-order surface chemical reaction 1, by formula (5.1.5) 2, for a solid sphere 3, for a circular cylinder and 4, for a spherical drop or bubble... Figure 5.1. The Sherwood number against the rate constant of second-order surface chemical reaction 1, by formula (5.1.5) 2, for a solid sphere 3, for a circular cylinder and 4, for a spherical drop or bubble...
Both monolayers and plasma polymer thin films studied show pseudo-second-order surface Diels-Alder kinetics and obey the Arrhenius equation. The magnitudes of the rate constants calculated in the case of the Diels-Alder reaction on pulsed plasma polymer thin films are lower than the magnitudes of the rate constants on monolayers (Table 19.1). The rate constants seem to reflect the... [Pg.299]

In this case, the rate law has been experimentally determined to be first order with respect to CO and also first order with respect to the Pt surface sites available for reaction (second order overall). Since we would like to know how fast the Pt surface is poisoned, we write the rate law in terms of the CO surface coverage, 3> ... [Pg.76]

The measurement of a from the experimental slope of the Tafel equation may help to decide between rate-determining steps in an electrode process. Thus in the reduction water to evolve H2 gas, if the slow step is the reaction of with the metal M to form surface hydrogen atoms, M—H, a is expected to be about If, on the other hand, the slow step is the surface combination of two hydrogen atoms to form H2, a second-order process, then a should be 2 (see Ref. 150). [Pg.214]

It was pointed out that a bimolecular reaction can be accelerated by a catalyst just from a concentration effect. As an illustrative calculation, assume that A and B react in the gas phase with 1 1 stoichiometry and according to a bimolecular rate law, with the second-order rate constant k equal to 10 1 mol" see" at 0°C. Now, assuming that an equimolar mixture of the gases is condensed to a liquid film on a catalyst surface and the rate constant in the condensed liquid solution is taken to be the same as for the gas phase reaction, calculate the ratio of half times for reaction in the gas phase and on the catalyst surface at 0°C. Assume further that the density of the liquid phase is 1000 times that of the gas phase. [Pg.740]

Second-order effects include experiments designed to clock chemical reactions, pioneered by Zewail and coworkers [25]. The experiments are shown schematically in figure Al.6.10. An initial 100-150 fs pulse moves population from the bound ground state to the dissociative first excited state in ICN. A second pulse, time delayed from the first then moves population from the first excited state to the second excited state, which is also dissociative. By noting the frequency of light absorbed from tlie second pulse, Zewail can estimate the distance between the two excited-state surfaces and thus infer the motion of the initially prepared wavepacket on the first excited state (figure Al.6.10 ). [Pg.242]

For second-order NLO applications, the films need to be noncentrosymmetric. 4-Di(2-hydroxyethyl)amino-4 -a2oben2enephosphonate was used to form SAMs on 2irconium-treated phosphorylated surfaces. Further reaction with POCl and hydrolysis created a new phosphorylated surface that could be treated with 2irconium salt (341—343). The principal advantage of the phosphate systems is high thermal stabiUty, simple preparation, and the variety of substrates that can be used. The latter is especially important if transparent substrates are required. Thiolate monolayers are not transparent, and alkyltrichlorosilanes have a serious stabiUty disadvantage. [Pg.544]

This development has been generalized. Results for zero- and second-order irreversible reactions are shown in Figure 10. Results are given elsewhere (48) for more complex kinetics, nonisothermal reactions, and particle shapes other than spheres. For nonspherical particles, the equivalent spherical radius, three times the particle volume/surface area, can be used for R to a good approximation. [Pg.172]

The reaction kinetics approximation is mechanistically correct for systems where the reaction step at pore surfaces or other fluid-solid interfaces is controlling. This may occur in the case of chemisorption on porous catalysts and in affinity adsorbents that involve veiy slow binding steps. In these cases, the mass-transfer parameter k is replaced by a second-order reaction rate constant k. The driving force is written for a constant separation fac tor isotherm (column 4 in Table 16-12). When diffusion steps control the process, it is still possible to describe the system hy its apparent second-order kinetic behavior, since it usually provides a good approximation to a more complex exact form for single transition systems (see Fixed Bed Transitions ). [Pg.1514]

C. A. Voigt, R. M. Zilf. Epidemic analysis of the second-order transition in the Zilf Gulari Barshad surface-reaction model. Phys Rev. E 56 R6241-R6244, 1997. [Pg.432]

The electronic wave function has now been removed from the first two terms while the curly bracket contains tenns which couple different electronic states. The first two of these are the first- and second-order non-adiabatic coupling elements, respectively, vhile the last is the mass polarization. The non-adiabatic coupling elements are important for systems involving more than one electronic surface, such as photochemical reactions. [Pg.55]

An important contribution for the endo selectivity in the carho-Diels-Alder reaction is the second-order orbital interaction [1], However, no bonds are formed in the product for this interaction. For the BF3-catalyzed reaction of acrolein with butadiene the overlap population between Cl and C6 is only 0.018 in the NC-transi-tion state [6], which is substantially smaller than the interaction between C3 and O (0.031). It is also notable that the C3-0 bond distance, 2.588 A, is significant shorter than the C1-C6 bond length (2.96 A), of which the latter is the one formed experimentally. The NC-transition-state structure can also lead to formation of vinyldihydropyran, i.e. a hetero-Diels-Alder reaction has proceeded. The potential energy surface at the NC-transition-state structure is extremely flat and structure NCA (Fig. 8.6) lies on the surface-separating reactants from product [6]. [Pg.307]

A soluble gas is absorbed into a liquid with which it undergoes a second-order irreversible reaction. The process reaches a steady-state with the surface concentration of reacting material remaining constant at (.2ij and the depth of penetration of the reactant being small compared with the depth of liquid which can be regarded as infinite in extent. Derive the basic differential equation for the process and from this derive an expression for the concentration and mass transfer rate (moles per unit area and unit time) as a function of depth below the surface. Assume that mass transfer is by molecular diffusion. [Pg.857]

Any fast reaction can enhance mass transfer. Consider a very fast, second-order reaction between the gas-phase component A and a liquid component B. The concentration of B will quickly fall to zero in the vicinity of the freshly exposed surface and a reaction plane, within which b = Q, will gradually move away from the surface. If components A and B have similar liquid-phase diflusivities, the enhancement factor is... [Pg.411]


See other pages where Surface reaction second-order is mentioned: [Pg.414]    [Pg.725]    [Pg.727]    [Pg.714]    [Pg.716]    [Pg.414]    [Pg.11]    [Pg.38]    [Pg.2156]    [Pg.2222]    [Pg.131]    [Pg.154]    [Pg.156]    [Pg.42]    [Pg.391]    [Pg.416]    [Pg.421]    [Pg.425]    [Pg.428]    [Pg.428]    [Pg.430]    [Pg.115]    [Pg.344]    [Pg.390]    [Pg.13]    [Pg.32]    [Pg.153]    [Pg.153]    [Pg.65]   
See also in sourсe #XX -- [ Pg.217 ]




SEARCH



Reaction second-order

Surface order

Surface ordering

© 2024 chempedia.info