Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction rate, temperature coefficient

There are available from experiment, for such reactions, measurements of rates and the familiar Arrhenius parameters and, much more rarely, the temperature coefficients of the latter. The theories which we use, to relate structure to the ability to take part in reactions, provide static models of reactants or transition states which quite neglect thermal energy. Enthalpies of activation at zero temperature would evidently be the quantities in terms of which to discuss these descriptions, but they are unknown and we must enquire which of the experimentally available quantities is most appropriately used for this purpose. [Pg.122]

The rate law draws attention to the role of component concentrations. AH other influences are lumped into coefficients called reaction rate constants. The are not supposed to change as concentrations change during the course of the reaction. Although are referred to as rate constants, they change with temperature, solvent, and other reaction conditions, even if the form of the rate law remains the same. [Pg.508]

Relative reactivity wiU vary with the temperature chosen for comparison unless the temperature coefficients are identical. For example, the rate ratio of ethoxy-dechlorination of 4-chloro- vs. 2-chloro-pyridine is 2.9 at the experimental temperature (120°) but is 40 at the reference temperature (20°) used for comparing the calculated values. The ratio of the rate of reaction of 2-chloro-pyridine with ethoxide ion to that of its reaction with 2-chloronitro-benzene is 35 at 90° and 90 at 20°. The activation energy determines the temperature coefficient which is the slope of the line relating the reaction rate and teniperature. Comparisons of reactivity will of course vary with temperature if the activation energies are different and the lines are not parallel. The increase in the reaction rate with temperature will be greater the higher the activation energy. [Pg.265]

It is possible, in some situations, that two different phenomena which proceed at different rates with different temperature coefficients or activation energies will affect the physical properties. In such complex cases, it is not expect to obtain a linear relation between the logarithm of life and reciprocal absolute temperature. If one obtains a nonlinear curve, however, it may he possible to identify the reaction causing the nonlinearity and correct for it. When one can make such a correction, one obtains a linear relationship. [Pg.116]

The delay, t0, preceding the onset of the main reaction may include contributions from (i) the time required for the sample to attain reaction temperature, h, (ii) additions to fh resulting from changes within the reaction sample, e.g. water removal (endothermic) from a hydrate, td, phase transitions, etc. and (iii) slow processes preceeding establishment of the main reaction, which are to be regarded as the true induction period, The effective values of th, td and may show different temperature coefficients so that the magnitude of t0(=th + ta + i) may vary with temperature in a complex manner, perhaps differently from that of the subsequent rate process. [Pg.80]

Benson [499] and Livingstone [500] considered the influence of experimental accuracy on measured rate and temperature coefficients. To measure the rate coefficient to 0.1%, the relative errors in each ctj value must be <0.1% and the reaction interval should be at least 50%. Temperature control to achieve this level of precision must be 0.003% or 0.01 K at 300 K. For temperature control to 1 K, the minimum error in the rate coefficient is 5% and in the activation energy, measured over a 20 K interval, is 10%. No allowance is included in these calculations for additional factors such as self-heating or cooling. [Pg.83]

A comparative study [651] of the relative stabilities of various forms of U03 by DTA methods lists the temperatures of onset of reaction in the sequence a < e < amorphous < 0 < U02.9 < S < 7 (673, 733, 773, 803, 853, 863 and 903 K, respectively). Themal stabilities, as measured by the first-order reaction rate coefficient, magnitudes of E or enthalpies of reaction, increased with increasing structural symmetry. [Pg.149]

From microscopic measurements of the rates of nucleation and of growth of particles of barium metal product, Wischin [201] observed that the number of nuclei present increased as the third power (—2.5—3.5) of time and that the isothermal rate of radial growth of visible nuclei was constant. During the early stages of reaction, the acceleratory region of the a—time plot obeyed the power law [eqn. (2)] with 6 temperature coefficients of these processes were used by Wischin [201]... [Pg.158]

Ionic Reactions in TD/D2 Methane Mixtures. Previous investigation of the radiolysis of D2 containing small quantities of CH4 demonstrated that at low conversions all products anticipated from the H atom abstraction sequence except CH3D are absent from 125° to —196°C. and that the temperature coefficient of the rate of CH3D formation between 25° and 125 °C. is much too small for a purely atomic and free-radical reaction sequence (8). These observations are confirmed by new data presented in Table I. The new data also demonstrate the initial value of G(CH3D) is independent of temperature at 25°C. and below. [Pg.286]

Low energy ion-molecule reactions have been studied in flames at temperatures between 1000° and 4000 °K. and pressures of 1 to 760 torr. Reactions of ions derived from hydrocarbons have been most widely investigated, and mechanisms developed account for most of the ions observed mass spectrometrically. Rate constants of many of the reactions can be determined. Emphasis is on the use of flames as media in which reaction rate coefficients can be measured. Flames provide environments in which reactions of such species as metallic and halide additive ions may also be studied many interpretations of these studies, however, are at present speculative. Brief indications of the production, recombination, and diffusion of ions in flames are also provided. [Pg.297]

The Qxo, or temperature coefficient, is the factor by which the rate of a biologic process increases for a 10 °C increase in temperature. For the temperatures over which enzymes are stable, the rates of most biologic processes typically double for a 10 °C rise in temperature (Qjo = 2). Changes in the rates of enzyme-catalyzed reactions that accompany a rise or fall in body temperature constitute a prominent survival feature for cold-blooded life forms such as lizards or fish, whose body temperatures are dictated by the external environment. However, for mammals and other homeothermic organisms, changes in enzyme reaction rates with temperature assume physiologic importance only in circumstances such as fever or hypothermia. [Pg.63]

According to Eq. (14.2), the activation energy can be determined from the temperature dependence of the reaction rate constant. Since the overall rate constant of an electrochemical reaction also depends on potential, it must bemeasured at constant values of the electrode s Galvani potential. However, as shown in Section 3.6, the temperature coefficients of Galvani potentials cannot be determined. Hence, the conditions under which such a potential can be kept constant while the temperature is varied are not known, and the true activation energies of electrochemical reactions, and also the true values of factor cannot be measured. [Pg.242]


See other pages where Reaction rate, temperature coefficient is mentioned: [Pg.376]    [Pg.41]    [Pg.316]    [Pg.375]    [Pg.441]    [Pg.283]    [Pg.54]    [Pg.111]    [Pg.301]    [Pg.277]    [Pg.459]    [Pg.2268]    [Pg.218]    [Pg.424]    [Pg.447]    [Pg.409]    [Pg.329]    [Pg.168]    [Pg.6]    [Pg.95]    [Pg.230]    [Pg.115]    [Pg.123]    [Pg.129]    [Pg.252]    [Pg.255]    [Pg.197]    [Pg.299]    [Pg.79]    [Pg.389]    [Pg.6]    [Pg.224]    [Pg.218]    [Pg.281]    [Pg.521]    [Pg.38]    [Pg.590]    [Pg.261]   
See also in sourсe #XX -- [ Pg.449 ]




SEARCH



Negative temperature coefficients reaction rate

Rate coefficient

Reaction coefficients

Reaction rate coefficient

Reaction rate temperature

Temperature coefficient

Temperature rates

© 2024 chempedia.info