Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction mechanism kinetic expressions

The relationship between a kinetic expression and a reaction mechanism can be appreciated by considering the several individual steps that constitute the overall reaction mechanism. The expression for the rate of any single step in a reaction mechanism will contain a concentration term for each reacting species. Thus, for the reaction sequence... [Pg.193]

These examples illustrate the relationship between kinetic results and the determination of reaction mechanism. Kinetic results can exclude from consideration all mechanisms that require a rate law different from the observed one. It is often true, however, that related mechanisms give rise to identical predicted rate expressions. In this case, the mechanisms are kinetically equivalent, and a choice between them is not possible on the basis of kinetic data. A further limitation on the information that kinetic studies provide should also be recognized. Although the data can give the composition of the activated complex for the rate-determining step and preceding steps, it provides no information about the structure of the intermediate. Sometimes the structure can be inferred from related chemical experience, but it is never established by kinetic data alone. [Pg.199]

Reaction mechanisms for the transformation of organic chemicals usually involve several elementary reactions. The kinetic expressions resulting from such mechanisms can become quite complex and difficult to handle. Often, simplifying assumptions can be used to analyze these systems. We shall examine one simplifying as-... [Pg.16]

Reaction Mechanism and Kinetics. The equiHbria involved ia the hydration—dehydration of ethylene first proposed (117) can be expressed as follows ... [Pg.405]

To illustrate the development of a kinetic expression from a postulated reaction mechanism, let us consider the base-catalyzed reaction of benzaldehyde and acetophenone. [Pg.197]

Theoretical formulation of kinetic expressions from specified geometry and/or mechanisms of reaction have often assumed particles to be of a regular, perhaps defined, shape and of uniform size. Equations developed in this way have frequently been found to give a satisfactory representation of observed isothermal kinetic characteristics in many reactions of interest. Other authors have, however, introduced an allowance for particle size distribution [480—482] into kinetic analyses. [Pg.72]

While there is agreement that the rates of clay dehydroxylations are predominantly deceleratory and sensitive to PH2G, there is uncertainty as to whether these reactions are better represented by the first-order or by the diffusion-control kinetic expressions. In the absence of direct observational evidence of interface advance phenomena, it must be concluded that the presently available kinetic analyses do not provide an unambiguous identification of the reaction mechanisms. The factors which control the rates of dehydroxylation of these structurally related minerals have not been identified. [Pg.144]

As with the decompositions of single solids, rate data for reactions between solids may be tested for obedience to the predictions of appropriate kinetic expressions. From the identification of a satisfactory representation for the reaction, the rate-limiting step or process may be identified and this observation usually contributes to the formulation of a reaction mechanism. It was pointed out in Sect. 1, however, that the number of parameters which must be measured to define completely all contributory reactions rises with the number of participating phases. The difficulties of kinetic analyses are thereby also markedly increased and the factors which have to be considered in the interpretation of rate data include the following. [Pg.252]

A strict kinetic limitation based on the gas-phase reactant can be modeled using a variable value for h although experience shows that a first order rate expressions with n=l often provides an excellent fit to experimental data regardless of the underlying reaction mechanism. A site-competition model such as Equation (10.12) can also be used. [Pg.420]

Once the kinetic parameters of elementary steps, as well as thermodynamic quantities such as heats of adsorption (Chapter 6), are available one can construct a micro-kinetic model to describe the overall reaction. Otherwise, one has to rely on fitting a rate expression that is based on an assumed reaction mechanism. Examples of both cases are discussed this chapter. [Pg.267]

Despite the aforementioned shortcomings the experimental data obtained using commercial autoclaves can be kinetically inteipreted in spite of non-isothermal operation, as shown further on in this chapter. Kinetic expressions obtained in this manner will rather be interpolation equations than equations reflecting real reaction mechanisms. [Pg.295]

Thus, in differential analysis rates are known for sets of operating conditions. Based on literature data, knowledge of the reaction mechanism, or preliminary experiments the form of the kinetic expression must be a.ssumed ... [Pg.308]

Linearization. In preliminary screening of reaction mechanisms, it is very useful to construct plots of experimental data transformed in such a way that the plot of the dependent (transformed) variable versus the independent (transformed) variable is a straight line if the rate equation being the basis of transformation has been chosen properly. This is illustrated with the rate expression for a-th order kinetics ... [Pg.314]

There are two objectives of setting up a kinetic mathematical model for chiral products. The first is the elucidation of the reaction mechanism with identification of the rate-controlhng step. The second is to derive a mathematical expression for the selectivity in terms of the ratio of the major product to the minor product. Then, based upon this expression, the reaction conditions such as pressure or feed ratio are changed to increase the selectivity. However, when the enantiomeric purity is over 99%, the selectivity is extremely high hence, the reaction mechanism for the major manifold can be neglected to simplify the establishment of the kinetic model. [Pg.29]

It is obvious that to quantify the rate expression, the magnitude of the rate constant k needs to be determined. Proper assignment of the reaction order and accurate determination of the rate constant is important when reaction mechanisms are to be deduced from the kinetic data. The integrated form of the reaction equation is easier to use in handling kinetic data. The integrated kinetic relationships commonly used for zero-, first-, and second-order reactions are summarized in Table 4. [The reader is advised that basic kinetic... [Pg.155]

This chapter treats the descriptions of the molecular events that lead to the kinetic phenomena that one observes in the laboratory. These events are referred to as the mechanism of the reaction. The chapter begins with definitions of the various terms that are basic to the concept of reaction mechanisms, indicates how elementary events may be combined to yield a description that is consistent with observed macroscopic phenomena, and discusses some of the techniques that may be used to elucidate the mechanism of a reaction. Finally, two basic molecular theories of chemical kinetics are discussed—the kinetic theory of gases and the transition state theory. The determination of a reaction mechanism is a much more complex problem than that of obtaining an accurate rate expression, and the well-educated chemical engineer should have a knowledge of and an appreciation for some of the techniques used in such studies. [Pg.76]

The rate behavior is modeled using kinetic expressions based on elementary reactions of the species involved. Generation of radicals can occur through five different initiation mechanisms. First, species such as DMPA or TED can generate either two carbon radicals or two DTC radicals. If XDT-like initiators are considered, one carbon radical and one DTC radical are generated upon photolysis, and a similar reaction for reinitiation of DTC-terminated polymer chains exists. Lastly, initiation of polymer chains by DTC radicals should be included for completeness. These reactions can be summarized as ... [Pg.53]

With the use of isothermal calorimetry, very accurate heat generation rates can be acquired as a function of time. By measurement at several temperatures, global kinetic parameters can be determined, assuming that the reaction mechanism remains the same within the temperature interval investigated. The heat production of the substance under test can be expressed as ... [Pg.64]

When translational diffusion and chemical reactions are coupled, information can be obtained on the kinetic rate constants. Expressions for the autocorrelation function in the case of unimolecular and bimolecular reactions between states of different quantum yields have been obtained. In a general form, these expressions contain a large number of terms that reflect different combinations of diffusion and reaction mechanisms. [Pg.368]

Since the discovery of the deuterium isotope in 1931 [44], chemists have long recognized that kinetic deuterium isotope effects could be employed as an indicator for reaction mechanism. However, the development of a mechanism is predicated upon analysis of the kinetic isotope effect within the context of a theoretical model. Thus, it was in 1946 that Bigeleisen advanced a theory for the relative reaction velocities of isotopic molecules that was based on the theory of absolute rate —that is, transition state theory as formulated by Eyring as well as Evans and Polanyi in 1935 [44,45]. The rate expression for reaction is given by... [Pg.70]

One of the major difficulties in Forlani s proposal of the molecular complex substrate-catalyst mechanism, to explain the fourth-order kinetics, is the assumption that this complex needs an additional molecule of amine to decompose to products. The formation of molecular complexes between dinitrohalobenzenes and certain amines (especially aromatic amines) has been widely studied, and their involvement in SwAr reaction has been discussed in Section II.E. The equilibrium constants for the formation of those complexes were calculated in several cases, and they were included in the kinetic expressions when pertinent. But in all cases, the complex was assumed to be in the reaction pathway, and no need of an additional amine molecule was invoked by the several authors who studied those reactions. [Pg.1289]

The Elovich model was originally developed to describe the kinetics of heterogeneous chemisorption of gases on solid surfaces [117]. It describes a number of reaction mechanisms including bulk and surface diffusion, as well as activation and deactivation of catalytic surfaces. In solid phase chemistry, the Elovich model has been used to describe the kinetics of sorption/desorption of various chemicals on solid phases [23]. It can be expressed as [118] ... [Pg.191]


See other pages where Reaction mechanism kinetic expressions is mentioned: [Pg.282]    [Pg.197]    [Pg.10]    [Pg.84]    [Pg.229]    [Pg.276]    [Pg.357]    [Pg.258]    [Pg.21]    [Pg.645]    [Pg.279]    [Pg.282]    [Pg.292]    [Pg.305]    [Pg.230]    [Pg.34]    [Pg.229]    [Pg.396]    [Pg.474]    [Pg.1269]    [Pg.1294]   
See also in sourсe #XX -- [ Pg.349 ]




SEARCH



Kinetic expression

Kinetic mechanism

Kinetic reaction mechanism

Kinetics mechanisms

Kinetics reaction mechanisms

Mechanical reaction kinetics

Reaction expression

© 2024 chempedia.info