Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rates of solvolysis

A plot against Hammett s cr-constants of the logarithms of the rate constants for the solvolysis of a series of Mz-substituted dimethylphenylcarbinyl chlorides, in which compounds direct resonance interaction with the substituent is not possible, yielded a reasonably straight line and gave a value for the reaction constant (p) of — 4 54. Using this value of the reaction constant, and with the data for the rates of solvolysis, a new set of substituent parameters (cr+) was defined. The procedure described above for the definition of cr+, was adopted for... [Pg.138]

A more quantitative approach to the influence of the thiazole ring on the reactivity of a lateral functional chain was made in a recent study by Noyce and Fike (383), already discussed in Section 10.4. The first-order rates of solvolysis for three isomeric 1-thiazolylethyl chlorides were determined in 80% ethanol. The order of relative reactivity observed. [Pg.146]

In the second, which belongs to a systematic study of the transmission of substituent effects in heterocyclic systems, Noyce and Forsyth (384-386) showed that for thiazole, as for other simple heterocyclic systems, the rate of solvolysis of substituted hetero-arylethyl chlorides in 80% ethanol could be correlated with a constants of the substituent X only when there is mutual conjugation between X and the reaction center. In the case of thiazole this situation corresponds to l-(2-X-5-thiazolyl)ethyl chlorides (262) and l-(5-X-2-thiazolyl)ethyl chlorides (263). [Pg.148]

The transmission of the effects of substituents in the 2- and 4-positions across the thiazole ring has been determined from the rates of solvolysis... [Pg.393]

TABLE m-58. RATE OF SOLVOLYSIS OF 4-SUBSTITUTED 2-(l-CHLOROETHYD-THI.AZOLES 1283. 286)... [Pg.395]

Solvent Effects on the Rate of Substitution by the S l Mechanism Table 8 6 lists the relative rate of solvolysis of tert butyl chloride m several media m order of increasing dielectric constant (e) Dielectric constant is a measure of the ability of a material m this case the solvent to moderate the force of attraction between oppositely charged par tides compared with that of a standard The standard dielectric is a vacuum which is assigned a value e of exactly 1 The higher the dielectric constant e the better the medium is able to support separated positively and negatively charged species 8olvents... [Pg.345]

A substantial body of evidence indicates that allylic carbocations are more stable than simple alkyl cations For example the rate of solvolysis of a chlonde that is both tertiary and allylic is much faster than that of a typical tertiary alkyl chloride... [Pg.391]

Hydrolysis to Glycols. Ethylene chlorohydrin and propylene chlorohydrin may be hydrolyzed ia the presence of such bases as alkaU metal bicarbonates sodium hydroxide, and sodium carbonate (31—33). In water at 97°C, l-chloro-2-propanol forms acid, acetone, and propylene glycol [57-55-6] simultaneously the kinetics of production are first order ia each case, and the specific rate constants are nearly equal. The relative rates of solvolysis of... [Pg.73]

Solvolysis of tosylate (303) yields, in addition to aziridinyl alcohol (304), ring expanded products (305) and (306) (68TL6179). These products and the observed rates of solvolysis were explained in terms of bicyclic intermediate (301). [Pg.77]

A classic example of neighboring-group participation involves the solvolysis of compounds in which an acetoxy substituent is present next to a carbon that is undergoing nucleophilic substitution. For example, the rates of solvolysis of the cis and trans isomers of 2-acetoxycyclohexyl p-toluenesulfonate differ by a factor of about 670, the trans compound being the more reactive one ... [Pg.309]

The occurrence of nucleophilic participation is also indicated by a rate enhancement relative to the rate of solvolysis of n-butyl p-bromobenzenesulfonate. The solvolysis rates of a series of cu-mefhoxyall l p-bromobenzenesulfontes have been determined. A maximum rate is again observed where participation of a methoxy group via a live-membered ring is possible (see Table 5.20). [Pg.311]

The solvolysis of the tosylate of 3-cyclohexenol has been studied in several solvents. The rate of solvolysis is not very solvent-sensitive, being within a factor of 5 for all solvents. The product distribution is solvent-sensitive, however, as shown below. [Pg.339]

The disrotatory mode, in which the methyl groups move away from each other, would be more favorable for steric reasons. If the ring opening occurs through a discrete cyclopropyl cation, the W-shaped allylic cation should be formed in preference to the sterically less favorable U-shaped cation. This point was investigated by comparing the rates of solvolysis of the cyclopropyl tosylates 6-8 ... [Pg.617]

Reactions that occur with the development of an electron deficiency, such as aromatic electrophilic substitutions, are best correlated by substituent constants based on a more appropriate defining reaction than the ionization of benzoic acids. Brown and Okamoto adopted the rates of solvolysis of substituted phenyldimeth-ylcarbinyl chlorides (r-cumyl chlorides) in 90% aqueous acetone at 25°C to define electrophilic substituent constants symbolized o-. Their procedure was to establish a conventional Hammett plot of log (.k/k°) against (t for 16 /wcra-substituted r-cumyl chlorides, because meta substituents cannot undergo significant direct resonance interaction with the reaction site. The resulting p value of —4.54 was then used in a modified Hammett equation. [Pg.321]

The real world of Sn reactions is not quite as simple as the discussion has so far suggested. The preceding treatment in terms of two clearly distinct mechanisms, SnI and Sn2, implies that all substitution reactions will follow one or the other of these mechanisms. This is an oversimplification. The strength of the dual mechanism hypothesis and its limitations are revealed by these relative rates of solvolysis of alkyl bromides in 80% ethanol methyl bromide, 2.51 ethyl bromide, 1.00 isopropyl bromide, 1.70 /er/-butyl bromide, 8600. Addition of lyate ions increases the rate for the methyl, ethyl, and isopropyl bromides, whereas the tert-butyl bromide solvolysis rate is unchanged. The reaction with lyate ions is overall second-order for methyl and ethyl, first-order for tert-butyl, and first- or second-order for the isopropyl member, depending upon the concentrations. Similar results are found in other solvents. These data show that the methyl and ethyl bromides solvolyze by the Sn2 mechanism, and tert-butyl bromide by the SnI mech-... [Pg.428]

Where Br nucleophilically promotes the Br+/OTf- elimination to generate free Br2 and cyclohexene. This process requires that the rate of solvolysis of 4 be linearly dependent on [Br ]. However, control (ref. 15) kinetics experiments indicate that the rate constant for solvolysis of 4 in HOAc or MeOH are independent of Br" thus generation of free Br2 must occur after the rate limiting step. This nicely confirms the previous conclusion based upon the invariance of the n0a+10hV9h ratio on [Br]. [Pg.126]


See other pages where Rates of solvolysis is mentioned: [Pg.106]    [Pg.107]    [Pg.394]    [Pg.346]    [Pg.155]    [Pg.163]    [Pg.271]    [Pg.296]    [Pg.335]    [Pg.341]    [Pg.346]    [Pg.63]    [Pg.154]    [Pg.366]    [Pg.412]    [Pg.417]    [Pg.419]    [Pg.432]    [Pg.44]    [Pg.261]    [Pg.268]    [Pg.268]    [Pg.275]    [Pg.275]    [Pg.282]    [Pg.308]   
See also in sourсe #XX -- [ Pg.480 ]




SEARCH



Relative solvolysis rates of 1-phenylethyl esters and halides

Relative solvolysis rates of ethyl sulfonates and halides

Solvolysis Rates of Exo Isomers

Solvolysis rates

The Determination of a Solvolysis Rate with Tritium Labeling

© 2024 chempedia.info