Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rate constant kinetic theory

Pulsed-current techniques can furnish electrochemical kinetic information and have been used at the RDE. With a pulse duration of 10-4 s and a cycle time of 10-3 s, good agreement was found with steady-state results [144] for the kinetic determination of the ferri-ferrocyanide system [260, 261], Reduction of the pulse duration and cycle time would allow the measurement of larger rate constants. Kinetic parameter extraction has also been discussed for first-order irreversible reactions with two-step cathodic current pulses [262], A generalised theory describing the effect of pulsed current electrolysis on current—potential relations has appeared [263],... [Pg.429]

Experimental rate constants, kinetic isotope effects and chemical branching ratios for the CF2CFCICH3-do, -d, -d2, and -d2 molecules have been experimentally measured and interpreted using statistical unimolecular reaction rate theory.52 The structural properties of the transition states needed for the theory have been calculated by DFT at the B3PW91 /6-31 G(d,p/) level. [Pg.315]

The result in Eq. (11.50) is only valid for a one-dimensional system. However, if we identify this degree of freedom with the reaction coordinate, it can also be used in multidimensional cases as an estimate of the dynamical influence of a solvent on the conventional transition-state rate constant. The theory can be tested experimentally by studying the kinetics of a reaction in a series of solvents with varying viscosity. [Pg.274]

Lee also extended the non-equilibrium theory developed originally by Gid-dings [10] to obtain H in/ the plate height contribution due to the mass transfer resistances and to axial dispersion, the non-equilibrium contribution. He started from the kinetic equation of the lumped rate constant kinetic model ... [Pg.488]

In kinetic methods, a steady rate of evaporation, not necessarily close to equilibrium, is established and measured. Temperature is constant but pressure is not measured directly. Rather, pressure is calculated from the evaporation rate using kinetic theories. Accuracies are low using such methods. The techniques are used exclusively for pressures below about 100 Pa where other methods are not applicable. Even when kinetic methods do not yield meaningful absolute pressures, they may produce a temperature derivative of pressure that can provide the enthalpy of vaporization using Eq. (1.1). [Pg.4]

Where k is the rate constant, k is the transmission coefficient from the collision theory, Piunn is the tunneling correction, and the Qs are the standard partition functions (see Felipe et al. in this volume). By substituting appropriate carbon atoms with different isotopes on the molecule, one can calculate the ratio of the rate constants (kinetics isotopic effect). [Pg.409]

Mention was made in Section XVIII-2E of programmed desorption this technique gives specific information about both the adsorption and the desorption of specific molecular states, at least when applied to single-crystal surfaces. The kinetic theory involved is essentially that used in Section XVI-3A. It will be recalled that the adsorption rate was there taken to be simply the rate at which molecules from the gas phase would strike a site area times the fraction of unoccupied sites. If the adsorption is activated, the fraction of molecules hitting and sticking that can proceed to a chemisorbed state is given by exp(-E /RT). The adsorption rate constant of Eq. XVII-13 becomes... [Pg.705]

Smoluchowski theory [29, 30] and its modifications fonu the basis of most approaches used to interpret bimolecular rate constants obtained from chemical kinetics experiments in tenus of difhision effects [31]. The Smoluchowski model is based on Brownian motion theory underlying the phenomenological difhision equation in the absence of external forces. In the standard picture, one considers a dilute fluid solution of reactants A and B with [A] [B] and asks for the time evolution of [B] in the vicinity of A, i.e. of the density distribution p(r,t) = [B](rl)/[B] 2i ] r(t))l ] Q ([B] is assumed not to change appreciably during the reaction). The initial distribution and the outer and inner boundary conditions are chosen, respectively, as... [Pg.843]

Fast transient studies are largely focused on elementary kinetic processes in atoms and molecules, i.e., on unimolecular and bimolecular reactions with first and second order kinetics, respectively (although confonnational heterogeneity in macromolecules may lead to the observation of more complicated unimolecular kinetics). Examples of fast thennally activated unimolecular processes include dissociation reactions in molecules as simple as diatomics, and isomerization and tautomerization reactions in polyatomic molecules. A very rough estimate of the minimum time scale required for an elementary unimolecular reaction may be obtained from the Arrhenius expression for the reaction rate constant, k = A. The quantity /cg T//i from transition state theory provides... [Pg.2947]

If the fraction of sites occupied is 0, and the fraction of bare sites is 0q (so that 00 + 1 = 0 then the rate of condensation on unit area of surface is OikOo where p is the pressure and k is a constant given by the kinetic theory of gases (k = jL/(MRT) ) a, is the condensation coefficient, i.e. the fraction of incident molecules which actually condense on a surface. The evaporation of an adsorbed molecule from the surface is essentially an activated process in which the energy of activation may be equated to the isosteric heat of adsorption 4,. The rate of evaporation from unit area of surface is therefore equal to... [Pg.42]

The assumptions of transition state theory allow for the derivation of a kinetic rate constant from equilibrium properties of the system. That seems almost too good to be true. In fact, it sometimes is [8,18-21]. Violations of the assumptions of TST do occur. In those cases, a more detailed description of the system dynamics is necessary for the accurate estimate of the kinetic rate constant. Keck [22] first demonstrated how molecular dynamics could be combined with transition state theory to evaluate the reaction rate constant (see also Ref. 17). In this section, an attempt is made to explain the essence of these dynamic corrections to TST. [Pg.204]

The numerical values of AG and A5 depend upon the choice of standard states in solution kinetics the molar concentration scale is usually used. Notice (Eq. 5-43) that in transition state theory the temperature dependence of the rate constant is accounted for principally by the temperature dependence of an equilibrium constant. [Pg.208]

Fig. 7. A. Kinetic scheme for two site single filing channel. Ten rate constants are required. In the absence of a transmembrane potential, however, the two-fold symmetry of the channel reduces this to five rate constants. Then Eyring rate theory is used to introduce the voltage dependence as shown in Eq. 6. Fig. 7. A. Kinetic scheme for two site single filing channel. Ten rate constants are required. In the absence of a transmembrane potential, however, the two-fold symmetry of the channel reduces this to five rate constants. Then Eyring rate theory is used to introduce the voltage dependence as shown in Eq. 6.
A further paper [167] explains the lamellar thickness selection in the row model. The minimum thickness lmin is derived from the similation and found to be consistent with equilibrium results. The thickness deviation 81 = l — lmin is approximately constant with /. It is established that the model fulfills the criteria of a kinetic theory Firstly, a driving force term (proportional to 81) and a barrier term (proportional to /) are indentified. Secondly, the competition between the two terms leads to a maximum in growth rate (see Fig. 2.4) which is located at the average thickness l obtained by simulation. Further, the role of fluctuations becomes apparent when the dependence on the interaction energy e is investigated. Whereas downwards (i.e. decreasing l) fluctuations are approximately independent... [Pg.300]

A central problem in studying ion-molecule reactions is the dependence of the microscopic cross-section, a or the rate constant k upon the relative velocity of the ion and the molecule. Only from reliable, established data on this dependence can one choose among the various theoretical models advanced to account for the kinetics of these processes such as the polarization theory of Gioumousis and Stevenson (10) or the more recent phase-space treatment of Light (26). [Pg.137]

Previous theoretical kinetic treatments of the formation of secondary, tertiary and higher order ions in the ionization chamber of a conventional mass spectrometer operating at high pressure, have used either a steady state treatment (2, 24) or an ion-beam approach (43). These theories are essentially phenomenological, and they make no clear assumptions about the nature of the reactive collision. The model outlined below is a microscopic one, making definite assumptions about the kinematics of the reactive collision. If the rate constants of the reactions are fixed, the nature of these assumptions definitely affects the amount of reaction occurring. [Pg.146]

Equation (5) holds for rate constants of the first order in sec" and of the second order in 1 mol sec". ) Therefore, no distinction will be made between the two pairs of the activation parameters in this paper the computation usually will be carried out in the simpler terms of Arrhenius theory, but all of the results will apply equally well for the activation enthalpy and activation entropy, too. Furthermore, many considerations apply to equilibria as well as to kinetics then the symbols AH, AS, AG will mean AH, AS, AG as well as AH°, AS°, AG°, and k will denote either rate or equilibrium constant. [Pg.415]

EPR studies on electron transfer systems where neighboring centers are coupled by spin-spin interactions can yield useful data for analyzing the electron transfer kinetics. In the framework of the Condon approximation, the electron transfer rate constant predicted by electron transfer theories can be expressed as the product of an electronic factor Tab by a nuclear factor that depends explicitly on temperature (258). On the one hand, since iron-sulfur clusters are spatially extended redox centers, the electronic factor strongly depends on how the various sites of the cluster are affected by the variation in the electronic structure between the oxidized and reduced forms. Theoret-... [Pg.478]

Table 10.4 lists the rate parameters for the elementary steps of the CO + NO reaction in the limit of zero coverage. Parameters such as those listed in Tab. 10.4 form the highly desirable input for modeling overall reaction mechanisms. In addition, elementary rate parameters can be compared to calculations on the basis of the theories outlined in Chapters 3 and 6. In this way the kinetic parameters of elementary reaction steps provide, through spectroscopy and computational chemistry, a link between the intramolecular properties of adsorbed reactants and their reactivity Statistical thermodynamics furnishes the theoretical framework to describe how equilibrium constants and reaction rate constants depend on the partition functions of vibration and rotation. Thus, spectroscopy studies of adsorbed reactants and intermediates provide the input for computing equilibrium constants, while calculations on the transition states of reaction pathways, starting from structurally, electronically and vibrationally well-characterized ground states, enable the prediction of kinetic parameters. [Pg.389]

In 1930, Max Volmer and Tibor Erdey-Griiz used the concept of a slow discharge step for cathodic hydrogen evolntion (slow discharge theory). According to these ideas, the potential dependence of electrochemical reaction rate constants is described by Eq. (6.5). Since hydrogen ions are involved in the slow step A, the reaction rate will be proportional to their concentration. Thus, the overall kinetic equation can be written as... [Pg.268]


See other pages where Rate constant kinetic theory is mentioned: [Pg.300]    [Pg.110]    [Pg.665]    [Pg.691]    [Pg.782]    [Pg.2115]    [Pg.2144]    [Pg.187]    [Pg.507]    [Pg.515]    [Pg.514]    [Pg.405]    [Pg.504]    [Pg.6]    [Pg.187]    [Pg.188]    [Pg.245]    [Pg.271]    [Pg.275]    [Pg.175]    [Pg.126]    [Pg.302]    [Pg.9]    [Pg.30]    [Pg.420]    [Pg.303]    [Pg.315]    [Pg.384]   
See also in sourсe #XX -- [ Pg.38 ]




SEARCH



Kinetic constants

Kinetic constants constant

Kinetic rate constant

Kinetic rate constant encounter theory

Kinetic rates

Kinetic theory 492 kinetics

Kinetics constant

Kinetics theory

Rate Kinetics

Rate Theory

Rate constant kinetics

© 2024 chempedia.info