Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical silyl enol ethers

Cyclic and acyclic silyl enol ethers can be nitrated with tetranitromethane to give ct-nitro ketones in 64-96% yield fEqs. 2.42 and 2.43. " The mechanism involves the electron transfer from the silyl enol ether to tetranitromethane. A fast homolydc conphng of the resultant cadon radical of silyl enol ether with NO leads tn ct-nitro ketones. Tetranitromethane is a neutral reagent it is commercially available or readdy prepared. " ... [Pg.16]

An efficient two-step annelation of functionalized orthoesters with trimethyl-silyloxyfuran derivatives has been reported that produces bicyclo[3. .0]lactones. ° The reaction in Scheme 7 shows an example in which the initial condensation between silyl enol ether and orthoester is followed by the radical cyclization reaction under standard conditions. It is worth underlining the complete diastereocontrol in which three contiguous stereocenters are generated in one step with >95% stereoselectivity. [Pg.139]

This reaction is extended to the intramolecular ring closure of the intermediate radical 224 with olefinic or trimethylsilylacetylenic side chains [121]. Cu(BF4)2 is also effective as an oxidant (Scheme 89) [122]. Conjugate addition of Grignard reagents to 2-eyclopenten-l-one followed by cyclopropanation of the resulting silyl enol ethers gives the substituted cyclopropyl silyl ethers, which are oxidized to 4-substituted-2-cyclohexen-l-ones according to the above-mentioned method [123]. (Scheme 88 and 89)... [Pg.144]

A similar ring expansion has been reported in the oxidation of cyclopropanol 225 with manganese(III) tris(2-pyridinecarboxylate) to generate the / -keto radical, which is allowed to add to the silyl enol ether 226 [124], The... [Pg.144]

Addition of alkyllithium to cyclobutanones and transmetallation with VO(OEt)Cl2 is considered to give a similar alkoxide intermediates, which are converted to either the y-chloroketones 239 or the olefinic ketone 240 depending on the substituent of cyclobutanones. Deprotonation of the cationic species, formed by further oxidation of the radical intermediate, leads to 240. The oxovanadium compound also induces tandem nucleophilic addition of silyl enol ethers and oxidative ring-opening transformation to produce 6-chloro-l,3-diketones and 2-tetrahydrofurylidene ketones. (Scheme 95)... [Pg.147]

Only a few examples exist for the intermolecular trapping of allyl radicals with alkenes68,69. The reaction of a-carbonyl allyl radical 28 with silyl enol ether 29 occurs exclusively at the less substituted allylic terminus to form, after oxidation with ceric ammonium nitrate (CAN) and desilylation of the adduct radical, product 30 (equation 14). Formation of terminal addition products with /ram-con figuration has been observed for reaction of 28 with other enol ethers as well. [Pg.637]

Schafer reported that the electrochemical oxidation of silyl enol ethers results in the homo-coupling products. 1,4-diketones (Scheme 25) [59], A mechanism involving the dimerization of initially formed cation radical species seems to be reasonable. Another possible mechanism involves the decomposition of the cation radical by Si-O bond cleavage to give the radical species which dimerizes to form the 1,4-diketone. In the case of the anodic oxidation of allylsilanes and benzylsilanes, the radical intermediate is immediately oxidized to give the cationic species, because oxidation potentials of allyl radicals and benzyl radicals are relatively low. But in the case of a-oxoalkyl radicals, the oxidation to the cationic species seems to be retarded. Presumably, the oxidation potential of such radicals becomes more positive because of the electron-withdrawing effect of the carbonyl group. Therefore, the dimerization seems to take place preferentially. [Pg.76]

Silyl enol ethers have also been used as a trap for electrophilic radicals derived from a-haloesters [36] or perfluoroalkyl iodides [32]. They afford the a-alkylated ketones after acidic treatment of the intermediate silyl enol ethers (Scheme 19, Eq. 19a). Similarly, silyl ketene acetals are converted into o -pcriluoroalkyl esters upon treatment with per fluoro alkyl iodides [32, 47]. The Et3B/02-mediated diastereoselective trifluoromethylation [48,49] (Eq. 19b) and (ethoxycarbonyl)difluoromethylation [50,51] of lithium eno-lates derived from N-acyloxazolidinones have also been achieved. More recently, Mikami [52] succeeded in the trifluoromethylation of ketone enolates... [Pg.91]

Mattay et al. examined the regioselective and stereoselective cyclization of unsaturated silyl enol ethers by photoinduced electron transfer using DCA and DCN as sensitizers. Thereby the regiochemistry (6-endo versus 5-exo) of the cyclization could be controlled because in the absence of a nucleophile, like an alcohol, the cyclization of the siloxy radical cation is dominant, whereas the presence of a nucleophile favors the reaction pathway via the corresponding a-keto radical. The resulting stereoselective cis ring juncture is due to a favored reactive chair like conformer with the substituents pseudoaxial arranged (Scheme 27) [36,37]. [Pg.201]

In addition to the former example, Pandey et al. achieved efficient a-aryla-tion of ketones by the reaction of silyl enol ethers with arene radical cations generated by photoinduced electron transfer from 1,4-dicyanonaphthalene. Using this strategy various five-, six-, seven-, and eight-membered benzannulated compounds are accessible in yields in the range 60-70% [39],... [Pg.202]

In the presence of copper(I) chloride, FC-113a adds to silyl enol ethers affording adducts which can be transformed into the /1-chloro-/i-trifluoromethyl enones in moderate yields [100]. The carbon-carbon bond is formed via a free radical addition reaction (Eq. 28). Free radical addition mediated by iron pentacarbonyl was also described recently during a synthesis of a modified pyrethroid [101]. [Pg.145]

Since silyl enol ethers have a silyl group ji to the jr-system, anodic oxidation of silyl enol ethers takes place easily. In fact, anodic oxidation of silyl enol ethers proceeds smoothly to provide the homo-coupling products, 1,4-diketones (equations 37 and 38)42. This dimerization of the initially generated cation radical intermediate is more likely than the reaction of acyl cations formed by two electron oxidation of unreacted silyl enol ethers in these anodic reactions. [Pg.1204]

Hirano et al. reported on the stereoselective cyclization to give tetralin derivatives using the phenanthrene-p-dicyanobenzene sensitizer system. Pandey independently reported the intramolecular photocyclization of methoxybenzene derivatives bearing silyl enol ether chromophore via their heterodimer radical cations in the presence of 1,4-dicyanonaphthalene gave benzo-annulated cyclic ketones in 70% yields [490] (Scheme 133). [Pg.224]

The photochemical addition of cyclic 1,3-diones such as dimedone, 1,3-cylohexandione 62, or their respective silyl enol ethers leads to the formation of two fused furanylfullerenes, (1) achiral 63 and (2) chiral 64 [244], The latter having an unusual bis-[6,5] closed structure. In the initial step of this reaction, [2 + 2] photocycloaddition across a [6,6] bond to form cyclobutanols or the corresponding TMS ethers is involved (Scheme 26). Oxidation with 02 yields in the formation of the radical 65a. Cleavage to 66a followed by cyclization gives furanyl radical 67a. H abstraction by 102 or a peroxy radical finally leads to product 63. In competition, formation of fullerene triplets by absorption of a... [Pg.696]

Diones,1 CAN effects cross-coupling between 1,2-disubstituted silyl enol ethers and a 1-substituted silyl enol ether to give a 1,4-dione. The reaction involves oxidation of 1 to a (1-oxo radical,R CHCOR2, which adds to the 1-substituted silyl enol ether (2) to form an adduct that is oxidized to the dione. [Pg.66]

Na enolate Zn enolate Enol ether chemistry silyl enol ether Ester hydrolysis Free radical... [Pg.331]

Pandey, G., Karthikeyan, M., and Mumgan, A. (1998) New intramolecular a-arylation strategy of ketones by the reaction of silyl enol ethers to photosensitized electron transfer generated arene radical cations construction of benzannulated and benzospiroannulated compounds. Journal of Organic Chemistry, 63, 2867-2872. [Pg.285]

Substrates containing an electron-rich double bond, such as enol ethers and enol acetates, are easily oxidized by means of PET to electron-deficient aromatic compounds, such as dicyanoanthracene (DCA) or dicyanonaphthalene (DCN), which act as photosensitizers. Cyclization reactions of the initially formed silyloxy radical cation in cyclic silyl enol ethers tethered to an olefinic or an electron-rich aromatic ring, can produce bicyclic and tricyclic ketones with definite stereochemistry (Scheme 9.14) [20, 21]. [Pg.293]

Narasaka and coworkers reported radical-polar crossover addition/cyclization reactions of phenacyl bromides 204 and electron-rich alkenes such as (silyl) enol ethers 205, catalyzed by the rhenium(I) complex 206 (Fig. 57) [302], The active catalyst 206A formed after thermal nitrogen elimination from 206 reduced 204 either directly or by oxidative addition/homolysis via rhenium enolate 204A to... [Pg.178]

One silicon tethered example that is unique in its selectivity is the cinnamyl tethered silyl enol ether shown in Sch. 17. Unlike all of the other silyl tethered examples, this compound gives a photoadduct that is the result of a cross 2+2. However, it is the product expected if the cycloaddition is a stepwise process involving radical intermediates. It is also the product expected if the reaction pathway is controlled by 7i-stacking. [Pg.151]

A versatile strategy for efficient intramolecular oc-arylation of ketones was achieved by the reaction of silyle enol ethers with PET-generated arene radical cations. This strategy involved one-electron transfer from the excited methoxy-substituted arenes to ground-state DCN [42]. Pandey et al. reported the construction of five- to eight-membered benzannulated as well as benzospiroannulated compounds using this approach (Sch. 20) [42a]. The course of the reaction can be controlled via the silyl enol ether obtained... [Pg.280]

Tsai and coworkers89,91,246,247 reported the synthesis of cyclic silyl enol ethers and silyl ethers by using a radical cyclization followed by the radical Brook rearrangement (equation 111). The cyclization of 4-bromo-4-stannylbutyl silyl ketones 188 in benzene with a catalytic amount of tributyltin hydride and AIBN gave cyclic silyl enol ethers 18989 91 247. The whole catalytic cycle proposed is shown in equation 112. [Pg.901]

Free radical additions of phenylthio or stannyl radicals to 2-alkenyl 2-siloxycyclo-propanes afford similar products although a completely different mechanism is operative 84). This direct generation of protected y-oxoesters 144 and 145 is of interest since the silyl enol ether function might be usable for regioselective C-C-bond formation and the allyl stannane moiety in 145 could be activated for subsequent transformations. Yet further examples have to demonstrate utility and scope of this mode of ring opening. [Pg.107]

Complex 1 also catalyzes the regioselective radical addition of perhalogeno-ethanes to silyl enol ethers. The primary addition-desilylation products undergo the facile /1-elimination of a chloride to afford a,/3-unsaturated ketones [26, 27]. For example, CF2C1CC13 adds to the trimethylsilyl enol ether of acetophenone to yield /i-chloro-/i-(chlorodifluoromethyl)-a,/ -acetophenone in 80% yield (Eq. 9). [Pg.161]

We also observed similar phenomena in the reaction of silyl enol ethers with cation radicals derived from allylic sulfides. For example, oxidation of allyl phenyl sulfide (3) with ammonium hexanitratocerate (CAN) in the presence of silyl enol ether 4 gave a-phenylthio-Y,5-un-saturated ketone 5. In this reaction, silyl enol ether 4 reacts with cation radical of allyl phenyl sulfide CR3 to give sulfonium intermediate C3, and successive deprotonation and [2,3]-Wittig rearrangement affords a-phenylthio-Y,6-unsaturated ketone 5 (Scheme 2). Direct carbon-carbon bond formation is so difficult that nucleophiles attack the heteroatom of the cation radicals. [Pg.47]

The reaction proceeds as follows a cation radical CR16 initially formed by one-electron oxidation fragments into 2-dithianyl cation C16 and a stannyl radical, and the cation C16 reacts with the silyl enol ether (Scheme 11). Formation of the stannyl radical was confirmed by trapping the stannyl radical with carbon tetrabromide to give tributyl-stannyl bromide. [Pg.52]


See other pages where Radical silyl enol ethers is mentioned: [Pg.46]    [Pg.8]    [Pg.49]    [Pg.1644]    [Pg.739]    [Pg.179]    [Pg.424]    [Pg.425]    [Pg.149]    [Pg.197]    [Pg.292]    [Pg.421]    [Pg.8]   
See also in sourсe #XX -- [ Pg.167 ]




SEARCH



Enol radical

Enolates silylation

Silyl enol ethers

Silyl enolate

Silyl enolates

Silyl radical

© 2024 chempedia.info