Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical reactions complexes

These selected examples show the importance of Lewis acid in diastereoselective radical reactions. Complexation with Lewis acid, in an endocyclic manner or by using extremely bulky metal complexes such as MABR or MAD, reduces the conformational flexibility of intermediate radicals resulting in an improved facial bias. Lewis acid has been shown to effectively enhance facial selectivity by making a temporary ring a to the radical, thus mimicking the exocyclic effect. Radical reactions involving chiral auxiliaries have also benefited from the use of Lewis acid. [Pg.458]

NO formation occurs by a complex reaction network of over 100 free-radical reactions, and is highly dependent on the form of nitrogen in the waste. Nitro-compounds form NO2 first, and then NO, approaching equiHbrium from the oxidized side. Amines form cyano intermediates on their way to NO, approaching equiHbrium from the reduced side. Using air as the oxidant, NO also forms from N2 and O2. This last is known as thermal NO. ... [Pg.58]

Thermal cracking takes place without a catalyst at temperatures up to 900 °C. The exact processes are complex, although they undoubtedly involve radical reactions. The high-temperature reaction conditions cause spontaneous homolytic breaking of C-C and C-H bonds, with resultant formation of smaller fragments. We might imagine, for instance, that a molecule of butane... [Pg.173]

The same high reactivity of radicals that makes possible the alkene polymerization we saw in the previous section also makes it difficult to carry out controlled radical reactions on complex molecules. As a result, there are severe limitations on the usefulness of radical addition reactions in the laboratory. Tn contrast to an electrophilic addition, where reaction occurs once and the reactive cation intermediate is rapidly quenched in the presence of a nucleophile, the reactive intermediate in a radical reaction is not usually quenched, so it reacts again and again in a largely uncontrollable wav. [Pg.243]

A most attractive feature of radical reactions that recommends their use in the synthesis of complex molecules is that steric crowding, particularly on the radical center, is tolerated in many instances. Indeed, radical reactions are ideally suited for the con-... [Pg.415]

Other radical reactions not covered in this chapter are mentioned in the chapters that follow. These include additions to systems other than carbon-carbon double bonds [e.g. additions to aromatic systems (Section 3.4.2.2.1) and strained ring systems (Section 4.4.2)], transfer of heteroatoms [eg. chain transfer to disulfides (Section 6.2.2.2) and halocarbons (Section 6.2.2.4)] or groups of atoms [eg. in RAFT polymerization (Section 9.5.3)], and radical-radical reactions involving heteroatom-centered radicals or metal complexes [e g. in inhibition (Sections 3.5.2 and 5.3), NMP (Section 9.3.6) and ATRP (Section 9.4)]. [Pg.11]

Aromatic nitro-compounds have also seen use as inhibitors in polymerization and as additives in radical reactions. The reactions of these compounds with radicals are very complex and may involve nitroso-compounds and nitroxide intermediates.20" 206 In this case, up to four moles of radicals may be consumed per mole of nitro-compound. The overall mechanism in the case of nitrobenzene has been written as shown in Scheme 5.18. The alkoxyamiuc 40 can be isolated in... [Pg.272]

A particular case of a [3C+2S] cycloaddition is that described by Sierra et al. related to the tail-to-tail dimerisation of alkynylcarbenes by reaction of these complexes with C8K (potassium graphite) at low temperature and further acid hydrolysis [69] (Scheme 24). In fact, this process should be considered as a [3C+2C] cycloaddition as two molecules of the carbene complex are involved in the reaction. Remarkable features of this reaction are (i) the formation of radical anion complexes by one-electron transfer from the potassium to the carbene complex, (ii) the tail-to-tail dimerisation to form a biscarbene anion intermediate and finally (iii) the protonation with a strong acid to produce the... [Pg.77]

The first reports of the observation of transient emission and enhanced absorption signals in the H-n.m.r. spectra of solutions in which radical reactions were taking place appeared in 1967. The importance of the phenomenon, named Chemically Induced Dynamic Nuclear Spin Polarization (CIDNP), in radical chemistry was quickly recognized. Since that time, an explosive growth in the number of publications on the subject has occurred and CIDNP has been detected in H, C, N, and P as well as H-n.m.r. spectra. Nevertheless, the number of groups engaged in research in this area is comparatively small. This may be a consequence of the apparent complexity of the subject. It is the purpose of this review to describe in a quahtative way the origin of CIDNP and to survey the published applications of the phenomenon in... [Pg.53]

This paper reviews the recent studies in the field of radical reactions of organobromine compounds. A special attention is paid to the use of metal-complex systems based on iron pentacarbonyl as catalysts this makes it possible to perform the initiation and chain transfer reactions selectively at C-Br bond. [Pg.180]

All the products were isolated as individual compounds, their structures are confirmed by NMR method (Table 1). Monograph (ref. 3) discusses in detail a character of action of metal-complex initiating system in radical reactions of polyhalogenmethanes with unsaturated compounds. [Pg.186]

The use of metal-complex initiating systems proved to be especially promising in carrying out the reactions with acrylic monomers which can be easily polymerized, when the common initiators of radical reactions are excepted. The use of Fe(CO)s -I- DMFA system allows us to perform homolytical addition of bromoform to acrylic monomers selectively at C-Br bond with no essential polymerization (ref. 10). [Pg.186]

Thus, this first example of stereoselective radical reaction, initiated with the system based on Fe(CO)5, shows opportunities and prospects of using the metal complex initiators for obtaining the stereomerically pure adducts of bromine-containing compounds to vinyl monomers with chiral substituents. [Pg.192]

Ru(bipy)3 formed in this reaction is reduced by the sacrificial electron donor sodium ethylenediaminetetra-acetic acid, EDTA. Cat is the colloidal catalyst. With platinum, the quantum yield of hydrogenation was 9.9 x 10 . The yield for C H hydrogenation was much lower. However, it could substantially be improv l by using a Pt colloid which was covered by palladium This example demonstrates that complex colloidal metal catalysts may have specific actions. Bimetalic alloys of high specific area often can prepared by radiolytic reduction of metal ions 3.44) Reactions of oxidizing radicals with colloidal metals have been investigated less thoroughly. OH radicals react with colloidal platinum to form a thin oxide layer which increases the optical absorbance in the UV and protects the colloid from further radical attack. Complexed halide atoms, such as Cl , Br, and I, also react... [Pg.121]

Ajayaghosh A, George SJ, Schenning APHJ (2005) Hydrogen-Bonded Assemblies of Dyes and Extended jr-Conjugated Systems. 258 83-118 Akai S, Kita Y (2007) Recent Advances in Pummerer Reactions. 274-. 35-76 Albert M, Fensterbank L, l.acote E, Malacria M (2006) Tandem Radical Reactions. 264 1-62 Alberto R (2005) New Organometallic Technetium Complexes for Radiopharmaceutical Imaging. 252 1-44... [Pg.256]

Instead of simply using two radical reactions in a domino process, the combination of three and more radical C-C- or C-N-bond forming radical transformations is also possible. This makes this methodology one of the most powerful procedures in the synthesis of complex molecules starting from simple substrates [77]. During the years, several strategies have been developed, and these are depicted in Scheme 3.50. The strategies can be classified as three types ... [Pg.253]

Mg11 complexes are also effective for controlling asymmetric radical reactions.33,34 Moreover, enantioselective radical reactions using chiral Mg11 complexes have been studied, and high enantioselectivities have been realized in the presence of stoichiometric or catalytic amounts of chiral auxiliaries such as bis-oxazolines (Scheme 8).35-39 In most cases, substrates having bidentate chelating moieties are required. [Pg.402]

In view of the extensive and fruitful results described above, redox reactions of small ring compounds provide a variety of versatile synthetic methods. In particular, transition metal-induced redox reactions play an important role in this area. Transition metal intermediates such as metallacycles, carbene complexes, 71-allyl complexes, transition metal enolates are involved, allowing further transformations, for example, insertion of olefins and carbon monoxide. Two-electron- and one-electron-mediated transformations are complementary to each other although the latter radical reactions have been less thoroughly investigated. [Pg.151]


See other pages where Radical reactions complexes is mentioned: [Pg.781]    [Pg.334]    [Pg.443]    [Pg.168]    [Pg.670]    [Pg.94]    [Pg.753]    [Pg.382]    [Pg.416]    [Pg.633]    [Pg.268]    [Pg.389]    [Pg.193]    [Pg.224]    [Pg.294]    [Pg.370]    [Pg.323]    [Pg.337]    [Pg.116]    [Pg.134]    [Pg.37]    [Pg.375]    [Pg.34]    [Pg.98]    [Pg.51]    [Pg.219]    [Pg.104]    [Pg.59]    [Pg.51]    [Pg.231]   
See also in sourсe #XX -- [ Pg.95 , Pg.112 ]




SEARCH



Radical complexes

© 2024 chempedia.info