Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical formation, mechanism

Details of the free radical formation mechanism were discussed elsewhere (16). [Pg.109]

Blakley, R.L., D.D. Henry, L.S. Winkler, and M.F. Borgerding Studies of mainstream smoke vapor phase radical formation mechanisms 49th Tobacco Chemists Research Conference, Program Booklet and Abstracts, Vol. 49, Paper No. 59, 1995, p. 45. [Pg.1478]

All radical reactions start with the initial formation of radicals in the reaction mixture. This decisive step can proceed either photochemically (as, for example, in the technical sulfoxidation and sulfochlorination processes) or thermally (as in all technical oxidation and cracking reactions as well as in most radical polymerizations). A third important type of radical formation proceeds via redox reaction with a one-electron transfer either using metal salts (e.g., Fe2 or Cu" /Cu ) or via electrolysis. Scheme 2.2.5 gives examples of technical relevance for all three radical formation mechanisms. [Pg.12]

In the most common method, the solution is irradiated with near-ultraviolet radiation (200-400 nm) to decompose organic matter by means of a radical formation mechanism. Then the generated CO2 is transported toward the detector with a carrier gas. In order to eliminate some ionic compounds that can interfere with the measurement, a membrane is placed before the detector. The detection is carried out either by the measurement of conductivity via a sensor or by a nondispersive infrared analyzer. In this online system, the sample analysis takes aroimd 6 min. Other systems based on the same principle have also been described. In this case the oxidation and detection are produced in the same chamber. In this "batch" apparatus the sample is trapped and analyzed for 3-30 min. With this latter system, some ionic species other than H and HCO3 can interfere with the conductivity readings. Species such as Ti02 [85,90] and persulfate [91,121] have been used as catalysts present as a diluted suspension in water. The TOC is obtained from the difference between the conductivities for the irradiated and nonirradiated samples. [Pg.351]

Based on these examples, the detection of some of the fluorine-containing radicals reported in Tables II and IV comes as no surprise. For instance, a number of the radicals are formed by C-C bond breakage. Thus a radical formation mechanism similar to the decay of the cation primary in irradiated alkali acetate salts would... [Pg.373]

An expression for the number of particles formed during Stage I was developed, assuming micellar entry as the formation mechanism (13), where k is a constant varying from 0.37 to 0.53 depending on the relative rates of radical adsorption in micelles and polymer particles, r is the rate of radical generation, m is the rate of particle growth, is the surface area covered by one surfactant molecule, and S is the total concentration of soap molecules. [Pg.23]

The hterature suggests that more than one mechanism may be operative for a given antiozonant, and that different mechanisms may be appHcable to different types of antiozonants. All of the evidence, however, indicates that the scavenger mechanism is the most important. All antiozonants react with ozone at a much higher rate than does the mbber which they protect. The extremely high reactivity with ozone of/)-phenylenediamines, compared to other amines, is best explained by their unique abiUty to react ftee-tadicaHy. The chemistry of ozone—/)-PDA reactions is known in some detail (30,31). The first step is beheved to be the formation of an ozone—/)-PDA adduct (32), or in some cases a radical ion. Pour competing fates for dissociation of the initial adduct have been described amine oxide formation, side-chain oxidation, nitroxide radical formation, and amino radical formation. [Pg.237]

The reactive species that iaitiate free-radical oxidatioa are preseat ia trace amouats. Exteasive studies (11) of the autoxidatioa mechanism have clearly estabUshed that the most reactive materials are thiols and disulfides, heterocycHc nitrogen compounds, diolefins, furans, and certain aromatic-olefin compounds. Because free-radical formation is accelerated by metal ions of copper, cobalt, and even iron (12), the presence of metals further compHcates the control of oxidation. It is difficult to avoid some metals, particularly iron, ia fuel systems. [Pg.414]

The reaction is likely to proceed by a radical-chain mechanism, involving intermediate formation of carboxyl radicals, as in the related Kolbe electrolytic synthesis. Initially the bromine reacts with the silver carboxylate 1 to give an acyl hypobromite species 3 together with insoluble silver bromide, which precipitates from the reaction mixture. The unstable acyl hypobromite decomposes by homolytic cleavage of the O-Br bond, to give a bromo radical and the carboxyl radical 4. The latter decomposes further to carbon dioxide and the alkyl radical 5, which subsequently reacts with hypobromite 3 to yield the alkyl bromide 2 and the new carboxyl radical 4Z... [Pg.167]

Acrylamide polymerization by radiation proceeds via free radical addition mechanism [37,38,40,45,50]. This involves three major processes, namely, initiation, propagation, and termination. Apart from the many subprocesses involved in each step at the stationary state the rates of formation and destruction of radicals are equal. The overall rate of polymerization (/ p) is so expressed by Chapiro [51] as ... [Pg.120]

Various kinetic models on particle formation were proposed by different researchers. These may be classified as follows (1) radical absorption mechanisms by Gardon [28-34] and Fisch and Tsai [13], (2) micellar nucleation newer models by Nomura et al. [35,36] and by Hansen and Ugelstad [37], (3) homogeneous nucleation by Fistch and coworkers [13,38,39]. [Pg.193]

Epoxide formation may be a side reaction occurring during initiation by t-butylperoxy radicals. The mechanism proposed for this process is as follows (Scheme 3,831, 1... [Pg.130]

Dithiols and dienes may react spontaneously to afford dithiols or dienes depending on the monomer dithiol ratio.221 However, the precise mechanism of radical formation is not known. More commonly, pholoinilialion or conventional radical initiators are employed. The initiation process requires formation of a radical to abstract from thiol or add to the diene then propagation can occur according to the steps shown in Scheme 7.17 until termination occurs by radical-radical reaction. Termination is usually written as involving the monomer-derived radicals. The process is remarkably tolerant of oxygen and impurities. The kinetics of the tbiol-ene photopolymerizalion have been studied by Bowman and... [Pg.378]

Four types of grafting from processes are distinguished by the mechanism of radical formation. [Pg.385]

When NMHC are significant in concentration, differences in their oxidation mechanisms such as how the NMHC chemistry was parameterized, details of R02-/R02 recombination (95), and heterogenous chemistry also contribute to differences in computed [HO ]. Recently, the sensitivity of [HO ] to non-methane hydrocarbon oxidation was studied in the context of the remote marine boundary-layer (156). It was concluded that differences in radical-radical recombination mechanisms (R02 /R02 ) can cause significant differences in computed [HO ] in regions of low NO and NMHC levels. The effect of cloud chemistry in the troposphere has also recently been studied (151,180). The rapid aqueous-phase breakdown of formaldehyde in the presence of clouds reduces the source of HOj due to RIO. In addition, the dissolution in clouds of a NO reservoir (N2O5) at night reduces the formation of HO and CH2O due to R6-RIO and R13. Predictions for HO and HO2 concentrations with cloud chemistry considered compared to predictions without cloud chemistry are 10-40% lower for HO and 10-45% lower for HO2. [Pg.93]

The physical picture of emulsion polymerization is complex due to the presence of multiple phases, multiple monomers, radical species, and other ingredients, an extensive reaction and particle formation mechanism, and the possibility of many modes of reactor operation. [Pg.361]

A key step proposed in the radical chain mechanism for the formation of the formyl complex is the coordination of CO to the Rh(OEP)- monomer, to give an intermediate carbonyl complex, Rh(OEP)(CO)- which then abstracts hydride from Rh(OEP)H to give the formyl product.This mechanism was proposed without direct evidence for the CO complex, and since then, again from the research group of Wayland, various Rh(fl) porphyrin CO complexes, Rh(Por)(CO), have been observed spectroscopically along with further reaction products which include bridging carbonyl and diketonate complexes. [Pg.294]

Recent studies have been directed towards the synthesis of heterocyclic hydrazones which have lower toxicities than thiosemicarbazones [44], It has been proposed that the hydrazinic N-H group is essential for activity since it might be involved in a crucial radical formation step important in the mechanism of RDR. This is supported by the loss of antileprotic activity for this series of compounds when the hydrazinic hydrogen is replaced by a methyl group [44]. The heterocyclic hydrazones, like thiosemicarbazones, behave as tridentate ligands. [Pg.6]

Ogura, R, Sugiyama, M., Nishi, J. and Haramaki, N. (1991). Mechanism of lipid radical formation following exposure of epidermal homogenate to ultraviolet light. J. Invest. Dermatol. 97, 1044-1047. [Pg.123]

K. R. and Roberts, L.J. (1990). Formation of unique biologically active prostaglandins in vivo by a non-cyclooxygenase free radical catalyzed mechanism. Adv. Prostagland. Thromboxanes Leukotriene Res. 21, 125-128. [Pg.276]

Basically, three reactions were evoked to support the occurrence of 5a-C-centered radicals 10 in tocopherol chemistry. The first one is the formation of 5a-substituted derivatives (8) in the reaction of a-tocopherol (1) with radicals and radical initiators. The most prominent example here is the reaction of 1 with dibenzoyl peroxide leading to 5a-a-tocopheryl benzoate (11) in fair yields,12 so that a typical radical recombination mechanism was postulated (Fig. 6.6). Similarly, low yields of 5a-alkoxy-a-tocopherols were obtained by oxidation of a-tocopherol with tert-butyl hydroperoxide or other peroxides in inert solvents containing various alcohols,23 24 although the involvement of 5 a-C-centered radicals in the formation mechanism was not evoked for explanation in these cases. [Pg.169]


See other pages where Radical formation, mechanism is mentioned: [Pg.413]    [Pg.82]    [Pg.17]    [Pg.250]    [Pg.342]    [Pg.413]    [Pg.82]    [Pg.17]    [Pg.250]    [Pg.342]    [Pg.44]    [Pg.491]    [Pg.513]    [Pg.543]    [Pg.483]    [Pg.195]    [Pg.77]    [Pg.438]    [Pg.74]    [Pg.978]    [Pg.324]    [Pg.34]    [Pg.294]    [Pg.441]    [Pg.273]    [Pg.75]    [Pg.98]    [Pg.115]    [Pg.201]    [Pg.263]    [Pg.136]    [Pg.165]    [Pg.256]   


SEARCH



Formate radicals

Free radical formation mechanism

Radical formation

Radical mechanism

Radical mechanisms Grignard reagent formation

Radicals trioxide formation mechanism

Reaction Mechanism for Alkyl Radical Formation

The Mechanism of Formation via Radical Reactions

© 2024 chempedia.info