Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Racemization groups

The stereochemical information about a given EM (A) consists of one or more conceivable dissections of the EM into a skeleton and a set of ligands together with the respective chemical identity group, racemate group and constitution group [10]. [Pg.213]

Stereochemical information is represented and processed by means of the theory of chemical identity groups. A given EM may have diverse significant stereochemical features. These features can be expressed in terms of the respective chemical identity group, the associated racemate group and the constitution group. V arious partitionings emphasize various points of stereochemical interest. [Pg.228]

The constitution group Kt is identical with the racemate group Rx it is stored as a representation matrix ... [Pg.229]

Raceme group of flowers often loose and disordered. [Pg.155]

Thus, to name just a few examples, a nucleophilic aliphatic substitution such as the reaction of the bromide 3.5 with sodium iodide (Figure 3-21a) can lead to a range of stereochemical products, from a l l mbrture of 3.6 and 3.7 (racemization) to only 3.7 (inversion) depending on the groups a, b, and c that are bonded to the central carbon atom. The ring closure of the 1,3-butadiene, 3.8, to cyclobutene... [Pg.196]

With the dicyclohexylcarbodiimide (DCQ reagent racemization is more pronounced in polar solvents such as DMF than in CHjCl2, for example. An efficient method for reduction of racemization in coupling with DCC is to use additives such as N-hydroxysuccinimide or l-hydroxybenzotriazole. A possible explanation for this effect of nucleophilic additives is that they compete with the amino component for the acyl group to form active esters, which in turn reaa without racemization. There are some other condensation agents (e.g. 2-ethyl-7-hydroxybenz[d]isoxazolium and l-ethoxycarbonyl-2-ethoxy-l,2-dihydroquinoline) that have been found not to lead to significant racemization. They have, however, not been widely tested in peptide synthesis. [Pg.231]

The major disadvantage of solid-phase peptide synthesis is the fact that ail the by-products attached to the resin can only be removed at the final stages of synthesis. Another problem is the relatively low local concentration of peptide which can be obtained on the polymer, and this limits the turnover of all other educts. Preparation of large quantities (> 1 g) is therefore difficult. Thirdly, the racemization-safe methods for acid activation, e.g. with azides, are too mild (= slow) for solid-phase synthesis. For these reasons the convenient Menifield procedures are quite generally used for syntheses of small peptides, whereas for larger polypeptides many research groups adhere to classic solution methods and purification after each condensation step (F.M. Finn, 1976). [Pg.237]

Another protecting group of amines is 1-isopropylallyloxycarbonyl, which can be deprotected by decarboxylation and a /3-elimination reaction of the (tt-l-isopropylallyl)palladium intermediate under neutral conditions, generating CO2 and 4-methyl-1,3-pentadiene. The method can be applied to the amino acid 674 and peptides without racemization[437]. [Pg.384]

Trigonal pyramidal molecules are chiral if the central atom bears three different groups If one is to resolve substances of this type however the pyramidal inversion that mterconverts enantiomers must be slow at room temperature Pyramidal inversion at nitrogen is so fast that attempts to resolve chiral amines fail because of their rapid racemization... [Pg.314]

What alkene gives a racemic mixture of (2R 3S) and (2S 3R) 3 bromo 2 butanol on treat ment with Br2 in aqueous solution" Hint Make a molecular model of one of the enantiomeric 3 bromo 2 butanols arrange it in a conformation in which the Br and OH groups are anti to one another then disconnect them )... [Pg.325]

Not stereospecific racemization ac companies inversion when leaving group IS located at a chirality cen ter (Section 8 10) Stereospecific 100% inversion of configuration at reaction site Nu cleophile attacks carbon from side opposite bond to leaving group (Section 8 4)... [Pg.356]

The enzyme is a single enantiomer of a chiral molecule and binds the coenzyme and substrate m such a way that hydride is transferred exclusively to the face of the carbonyl group that leads to (5) (+) lactic acid Reduction of pyruvic acid m the absence of an enzyme however say with sodium borohydride also gives lactic acid but as a racemic mixture containing equal quantities of the R and S enantiomers... [Pg.735]

R (Section 4 1) Symbol for an alkyl group Racemic mixture (Section 7 4) Mixture containing equal quantities of enantiomers... [Pg.1292]

The hydrogens of the methylene group in the backbone of the poly (methyl methacrylate) produce a single peak in a racemic dyad, as illustrated by structure [XVI]. [Pg.482]

DUactide (5) exists as three stereoisomers, depending on the configurations of the lactic acid monomer used. The enantiomeric forms whereia the methyl groups are cis are formed from two identical lactic acid molecules, D- or L-, whereas the dilactide formed from a racemic mixture of lactic acid is the opticaUy iaactive meso form, with methyl groups trans. The physical properties of the enantiomeric dilactide differ from those of the meso form (6), as do the properties of the polymers and copolymers produced from the respective dilactide (23,24). [Pg.512]

This procedure is restricted mainly to aminodicarboxyhc acids or diaminocarboxyhc acids. In the case of neutral amino acids, the amino group or carboxyl group must be protected, eg, by A/-acylation, esterification, or amidation. This protection of the racemic amino acid and deprotection of the separated enantiomers add stages to the overall process. Furthermore, this procedure requires a stoichiometric quantity of the resolving agent, which is then difficult to recover efficiendy. Practical examples of resolution by this method have been pubUshed (50,51). [Pg.278]

Derivatization with Optically Active Reagents and Separation on Achiral Columns. This method has been reviewed (65) a great number of homochiral derivatizing agents (HD A) are described together with many appHcations. An important group is the chloroformate HD As. The reaction of chloroformate HD As with racemic, amino-containing compounds yields carbamates, which are easily separated on conventional hplc columns, eg (66),... [Pg.279]

Since this original synthesis, a great number of improvements (191—201) have been made in the stereoselective preparation and derivatization of the CO-chain precursor, in cuprate reagent composition and preparation, in protecting group utilization, and in the preparation and resolution of hydroxycyclopentenones. Illustration of some of the many improvements are seen in a synthesis (202) of enisoprost, a PGE analogue. The improvements consist of a much more efficient route to the enone as well as modifications in the cuprate reactions. Preparation of the racemic enone is as follows ... [Pg.161]


See other pages where Racemization groups is mentioned: [Pg.228]    [Pg.229]    [Pg.43]    [Pg.228]    [Pg.229]    [Pg.43]    [Pg.331]    [Pg.375]    [Pg.424]    [Pg.424]    [Pg.93]    [Pg.143]    [Pg.168]    [Pg.231]    [Pg.231]    [Pg.234]    [Pg.318]    [Pg.240]    [Pg.295]    [Pg.382]    [Pg.311]    [Pg.342]    [Pg.475]    [Pg.59]    [Pg.60]    [Pg.189]    [Pg.512]    [Pg.440]    [Pg.310]    [Pg.407]    [Pg.255]    [Pg.260]    [Pg.353]    [Pg.157]    [Pg.28]   


SEARCH



Group from a Chiral Carbon Racemization

Hula-Twist Racemization of the 1,2-Bis(ethoxycarbonyl)ethyl Group

Racemization of 1-Cyanoethyl (1-ce) Group

Racemization of Bulky Groups in Cobaloxime Complexes

Racemizations of Alkyl Groups in Cobaloxime Complex Crystals

Two-Step Racemization of the 1,2-Bis(methoxycarbonyl)ethyl Group

Various Racemization Paths of Bulkier Alkyl Groups

© 2024 chempedia.info