Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Racemization carbons

Treatment of the unsymmetrical racemic carbonate roc-27a with Pd(0)/BPA, KHCO3 and water in CH2CI2 gave alcohol 28a in high yield and with high enantio-as well as regioselectivity (Scheme 2.1.4.30). Synthetically more relevant are the re-... [Pg.244]

The factor s can be determined by treating racemic 2 with racemic carbonate (Hoffman test) (Scheme 10, Eq. 35) [68]. [Pg.29]

Baggott JE, TamuraT, and Baker H (2001) Re-evaluation of the metabolism of oral doses of racemic carbon-6 isomers of formyltetrahydrofolate in human subjects. British Journal of Nutrition 85, 653-7. [Pg.411]

UNCA s are crystalline solids which are stable in the absence of water and nucleophiles. They react readily and cleanly with amino functions without racemization. Carbon dioxide is the only by-product which allows facile purification and isolation. [Pg.79]

Elimination in some cyclic systems proceeds regio- and stereoselectively. The Pd-catalyzed reaction of the racemic carbonate 491 afforded the diene 492 with 86 % ee via desymmetrization of the 7r-allylpalladium intermediate 493 when (-)-TolBINAP was used as a ligand [190],... [Pg.495]

Figure 6.114 Applications of N-acylamido[2dC]malonates and their unlabeled counterparts in the synthesis of racemic carbon-14-labeled a-amino acids... Figure 6.114 Applications of N-acylamido[2dC]malonates and their unlabeled counterparts in the synthesis of racemic carbon-14-labeled a-amino acids...
Thus, to name just a few examples, a nucleophilic aliphatic substitution such as the reaction of the bromide 3.5 with sodium iodide (Figure 3-21a) can lead to a range of stereochemical products, from a l l mbrture of 3.6 and 3.7 (racemization) to only 3.7 (inversion) depending on the groups a, b, and c that are bonded to the central carbon atom. The ring closure of the 1,3-butadiene, 3.8, to cyclobutene... [Pg.196]

It is important to notice that the united-atom simplification cannot be applied to functional hydrogens which are involved in the formation of a hydrogen hond or a salt bridge. This would destroy interactions important for the structural integrity of the protein. Removing the hydrogen at the u-carbon of the peptide backbone is also dangerous, because it prevents racemization of the amino acid. [Pg.363]

In peptide syntheses, where partial racemization of the chiral a-carbon centers is a serious problem, the application of 1-hydroxy-1 H-benzotriazole ( HBT") and DCC has been very successful in increasing yields and decreasing racemization (W. Kdnig, 1970 G.C. Windridge, 1971 H.R. Bosshard, 1973), l-(Acyloxy)-lif-benzotriazoles or l-acyl-17f-benzo-triazole 3-oxides are formed as reactive intermediates. If carboxylic or phosphoric esters are to be formed from the acids and alcohols using DCC, 4-(pyrrolidin-l -yl)pyridine ( PPY A. Hassner, 1978 K.M. Patel, 1979) and HBT are efficient catalysts even with tert-alkyl, choles-teryl, aryl, and other unreactive alcohols as well as with highly bulky or labile acids. [Pg.145]

The alkyl azide 118 is reduced to a primary amine by the Pd on carbon-catalyzed reaction of ammonium formate in MeOH at room temperature. No racemization takes place with chiral azides[l 11,112]. [Pg.542]

Section 7 16 Atoms other than carbon can be chirality centers Examples include those based on tetracoordmate silicon and Incoordinate sulfur as the chirality center In principle Incoordinate nitrogen can be a chirality center m compounds of the type N(x y z) where x y and z are different but inversion of the nitrogen pyramid is so fast that racemization occurs vrr tually instantly at room temperature... [Pg.318]

Not stereospecific racemization ac companies inversion when leaving group IS located at a chirality cen ter (Section 8 10) Stereospecific 100% inversion of configuration at reaction site Nu cleophile attacks carbon from side opposite bond to leaving group (Section 8 4)... [Pg.356]

If the a carbon atom of an aldehyde or a ketone is a chnality center its stereo chemical integrity is lost on enolization Enolization of optically active sec butyl phenyl ketone leads to its racemization by way of the achiral enol form... [Pg.768]

A novel technique for dating archaeological samples called ammo acid racemiza tion (AAR) IS based on the stereochemistry of ammo acids Over time the configuration at the a carbon atom of a protein s ammo acids is lost m a reaction that follows first order kinetics When the a carbon is the only chirality center this process corresponds to racemization For an ammo acid with two chirality centers changing the configuration of the a carbon from L to D gives a diastereomer In the case of isoleucme for example the diastereomer is an ammo acid not normally present m proteins called alloisoleucme... [Pg.1116]

Ammo acid racemization (Section 27 2) A method for dating archeological samples based on the rate at which the stereo chemistry at the a carbon of ammo acid components is ran domized It is useful for samples too old to be reliably dated by decay... [Pg.1276]

Microorganisms and their enzymes have been used to functionalize nonactivated carbon atoms, to introduce centers of chirahty into optically inactive substrates, and to carry out optical resolutions of racemic mixtures (1,2,37—42). Their utifity results from the abiUty of the microbes to elaborate both constitutive and inducible enzymes that possess broad substrate specificities and also remarkable regio- and stereospecificities. [Pg.309]

When additional substituents ate bonded to other ahcycHc carbons, geometric isomers result. Table 2 fists primary (1°), secondary (2°), and tertiary (3°) amine derivatives of cyclohexane and includes CAS Registry Numbers for cis and trans isomers of the 2-, 3-, and 4-methylcyclohexylamines in addition to identification of the isomer mixtures usually sold commercially. For the 1,2- and 1,3-isomers, the racemic mixture of optical isomers is specified ultimate identification by CAS Registry Number is fisted for the (+) and (—) enantiomers of /n t-2-methylcyclohexylamine. The 1,4-isomer has a plane of symmetry and hence no chiral centers and no stereoisomers. The methylcyclohexylamine geometric isomers have different physical properties and are interconvertible by dehydrogenation—hydrogenation through the imine. [Pg.206]

The a-carbon of glutamic acid is chiral. A convenient and effective means to determine the chemical purity of MSG is measurement of its specific rotation. The specific optical rotation of a solution of 10 g MSG in 100 mL of 2 A/HQ is +25.16. Besides L-glutamic acid [56-86-0] D-glutamic acid [6893-26-1] and the racemic mixture, DL-glutamic acid [617-65-2] are known. Unique taste modifying characteristics are possessed only by the L-form. [Pg.303]

Appllca.tlons. The first widely appHcable Ic separation of enantiomeric metallocene compounds was demonstrated on P-CD bonded-phase columns. Thirteen enantiomeric derivatives of ferrocene, mthenocene, and osmocene were resolved (7). Retention data for several of these compounds are listed in Table 2, and Figure 2a shows the Ic separation of three metallocene enantiomeric pairs. P-Cyclodextrin bonded phases were used to resolve several racemic and diastereomeric 2,2-binaphthyldiyl crown ethers (9). These compounds do not contain a chiral carbon but stiU exist as enantiomers because of the staggered position of adjacent naphthyl rings, and a high degree of chiral recognition was attained for most of these compounds (9). [Pg.97]

Butyl alcohols encompass the four stmcturaHy isomeric 4-carbon alcohols of empirical formula C H qO. One of these, 2-butanol, can exist in either the optically active R — ) or configuration or as a racemic ( ) mixture [15892-23-6]. [Pg.355]

Diaziridines also show slow nitrogen inversion, and carbon-substituted compounds can be resolved into enantiomers, which typically racemize slowly at room temperature (when Af-substituted with alkyl and/or hydrogen). For example, l-methyl-3-benzyl-3-methyl-diaziridine in tetrachloroethylene showed a half-life at 70 °C of 431 min (69AG(E)212). Preparative resolution has been done both by classical methods, using chiral partners in salts (77DOK(232)108l), and by chromatography on triacetyl cellulose (Section 5.08.2.3.1). [Pg.7]

Important synthetic paths to azirines and aziridines involve bond reorganization, or internal addition, of vinylnitrenes. Indeed, the vinylnitrene-azirine equilibrium has been demonstrated in the case of trans-2-methyl-3-phenyl-l-azirine, which at 110 °C racemizes 2000 times faster than it rearranges to 2-methylindole (80CC1252). Created in the Neber rearrangement or by decomposition of vinyl azides, the nitrene can cyclize to the p -carbon to give azirines (Scheme 4 Section 5.04.4.1). [Pg.33]

Azirine, trans-2-methyl-3-phenyl-racemization, 7, 33, 34 1-Azirine, 2-phenyl-reactions, 7, 69 with carbon disulfide, S, 153 1-Azirine, 3-vinyl-rearrangements, 7, 67 Azirines, 7, 47-93 cycloaddition reactions, 7, 26 fused ring derivatives, 7, 47-93 imidazole synthesis from, 5, 487-488 photochemical addition reactions to carbonyl compounds, 7, 56 photolysis, 5, 780, 7, 28 protonated... [Pg.528]

The stereochemistry of hydrogen-deuterium exchange at the chiral carbon in 2-phenylbutane shows a similar trend. When potassium t-butoxide is used as the base, the exchange occurs with retention of configuration in r-butanol, but racemization occurs in DMSO. The retention of configuration is visualized as occurring through an ion pair in which a solvent molecule coordinated to the metal ion acts as the proton donor... [Pg.412]

There have been many studies aimed at deducing the geometiy of radical sites by examining the stereochemistry of radical reactions. The most direct kind of study involves the generation of a radical at a carbon which is a stereogenic center. A planar or rapidly inverting radical would lead to racemization, whereas a rigid pyramidal structure should... [Pg.676]

Further evidence for a bromine-bridged radical comes from radical substitution of optically active 2-bromobutane. Most of the 2,3-dibromobutane which is formed is racemic, indicating that the stereogenic center is involved in the reaction. A bridged intermediate that can react at either carbon can explain the racemization. When the 3-deuterated reagent is used, it can be shown that the hydrogen (or deuterium) that is abstracted is replaced by bromine with retention of stereochemistry These results are also consistent with a bridged bromine radical. [Pg.709]


See other pages where Racemization carbons is mentioned: [Pg.242]    [Pg.245]    [Pg.37]    [Pg.245]    [Pg.534]    [Pg.64]    [Pg.402]    [Pg.468]    [Pg.440]    [Pg.242]    [Pg.245]    [Pg.37]    [Pg.245]    [Pg.534]    [Pg.64]    [Pg.402]    [Pg.468]    [Pg.440]    [Pg.424]    [Pg.161]    [Pg.240]    [Pg.295]    [Pg.342]    [Pg.255]    [Pg.353]    [Pg.157]    [Pg.29]    [Pg.65]    [Pg.129]    [Pg.160]    [Pg.511]    [Pg.102]   
See also in sourсe #XX -- [ Pg.59 ]




SEARCH



Group from a Chiral Carbon Racemization

Racemization at the a Carbon

© 2024 chempedia.info