Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enolates enolate

These authors also noted that the electron-donor ability of various derivatives of 2,2-dimesityl-1-phenylethenol decreases in the order enolate > enol > enol silyl ether > enol phosphate > enol acetate. As such, a simple derivatization allows the ready modulation of the electron-donor properties of ends. [Pg.201]

The solvent plays an important role in determining K. This can occur through specific solute-solvent interactions such as hydrogen bonding or charge transfer. In addition the solvent can reduce solute-solute interactions by dilution and thereby change the equilibrium if such interactions are different in enol-enol, enol-keto, or keto-keto dimers. Finally the dielectric constant of the solution will depend on the solvent and one can expect the more polar tautomeric form to be favored by polar solvents. Some of these aspects are explored in this experiment. [Pg.472]

If the a carbon atom of an aldehyde or a ketone is a chnality center its stereo chemical integrity is lost on enolization Enolization of optically active sec butyl phenyl ketone leads to its racemization by way of the achiral enol form... [Pg.768]

Enolate ion (Section 18 6) The conjugate base of an enol Enolate ions are stabilized by electron delocalization... [Pg.1283]

How many different enolates may arise from deprotonation of 2,4-pentanedione Draw Lewis structures for each, and predict which is likely to be the most stable. Check your conclusions by examining the energies of the different possible enolates (enolate A, B...). Is the most stable enolate that derived from deprotonation of the most electron-poor hydrogen Compare the electrostatic potential maps of the anions with each other and with your Lewis structures. Revise your drawings to be consistent with the maps. Why is one of the enolates preferred over the others ... [Pg.163]

Which of the two enolates enolate A or enolate B) is lower in energy Rationalize your observation by comparing their structures, charge distributions and electrostatic potential maps. Draw all of the resonance contributors needed to describe each enolate. Which enolate is generated by reaction with NaH ... [Pg.170]

Enolate Enolate Geometry Nitroalkanc Geometry d.r. (synjanti) Yield (%)... [Pg.1011]

Addition of enols, enolates, or enolate equivalents to imines or iminium ions provides an important route to (3-amino ketones. [Pg.139]

Although the reaction of ketones and other carbonyl compounds with electrophiles such as bromine leads to substitution rather than addition, the mechanism of the reaction is closely related to electrophilic additions to alkenes. An enol, enolate, or enolate equivalent derived from the carbonyl compound is the nucleophile, and the electrophilic attack by the halogen is analogous to that on alkenes. The reaction is completed by restoration of the carbonyl bond, rather than by addition of a nucleophile. The acid- and base-catalyzed halogenation of ketones, which is discussed briefly in Section 6.4 of Part A, provide the most-studied examples of the reaction from a mechanistic perspective. [Pg.328]

Kimura and co-workers have synthesized a series of alkoxide complexes with the alcohol functionality as a pendent arm.447 674 737 A zinc complex of l-(4-bromophenacyl)-l, 4,7,10-tetraaza-cyclododecane was also synthesized by the same workers to mimic the active site of class II aldolases. The X-ray structure shows a six-coordinate zinc center with five donors from the ligand and a water molecule bound. The ketone is bound with a Zn—O distance of 2.159(3) A (Figure 12). Potentiometric titration indicated formation of a mixture of the hydroxide and the enolate. Enolate formation was also independently carried out by reaction with sodium methoxide, allowing full characterization.738... [Pg.1212]

Nitration of ketones or enol ethers provides a useful method for the preparation of a-nitro ketones. Direct nitration of ketones with HN03 suffers from the formation of a variety of oxidative by-products. Alternatively, the conversion of ketones into their enolates, enol acetates, or enol ethers, followed by nitration with conventional nitrating agents such as acyl nitrates, gives a-nitro ketones (see Ref. 79, a 1980 review). The nitration of enol acetates of alkylated cyclohexanones with concentrated nitric acid in acetic anhydride at 15-22 °C leads to mixtures of cis- and rrans-substituted 2-nitrocyclohexanones in 75-92% yield. 4-Monoalkylated acetoxy-cyclohexanes give mainly m-compounds, and 3-monoalkylated ones yield fra/w-compounds (Eq. 2.40).80... [Pg.16]

Since the single-electron oxidation of electron-rich olefins, such as enols, enol ethers, enol acetates, or ketene acetals, is thermodynamically favored compared to simple alkenes, a number of attempts have been made to use... [Pg.81]

A mechanistic study of acetophenone keto-enol tautomerism has been reported, and intramolecular and external factors determining the enol-enol equilibria in the cw-enol forms of 1,3-dicarbonyl compounds have been analysed. The effects of substituents, solvents, concentration, and temperature on the tautomerization of ethyl 3-oxobutyrate and its 2-alkyl derivatives have been studied, and the keto-enol tautomerism of mono-substituted phenylpyruvic acids has been investigated. Equilibrium constants have been measured for the keto-enol tautomers of 2-, 3- and 4-phenylacetylpyridines in aqueous solution. A procedure has been developed for the acylation of phosphoryl- and thiophosphoryl-acetonitriles under phase-transfer catalysis conditions, and the keto-enol tautomerism of the resulting phosphoryl(thiophosphoryl)-substituted acylacetonitriles has been studied. The equilibrium (388) (389) has been catalysed by acid, base and by iron(III). Whereas... [Pg.599]

We can insert the heteroatom into the rest of the carbon skeleton, or attempt to join two units, one of which contains the heteroatom, by means of C-C and C-heteroatom linkages. To make the new bonds, two reaction types are most frequently encountered. Heteroatom-C bond formation is achieved using the heteroatom as a nucleophile to attack an electrophile such as a carbonyl group (see Section 7.7.1). Aldol-type reactions may be exploited for C-C bond formation (see Section 10.3), employing enamines and enols/enolate anions (see Section 10.5). [Pg.457]

Aldol Reaction The formation of an aldol (P-hydroxy carbonyl compound) through the catalyzed condensation of an enol/enolate with a carbonyl compound. [Pg.347]

Jnmps of a proton along the hydrogen bond represent another type of dynamics observed in hydrogen-bonded complexes. Mechanistically, this process is simplest for intramolecular hydrogen bonds. The fast enol-enolic equilibrium shown in Scheme 2.2 illustrates an intramolecular proton-jumping system [27]. Here, substituent X dictates the equilibrium constant as well as the rate of proton transfer. It should be noted that such proton jumps can be stopped on the H NMR time scale only at very low temperatures. [Pg.17]

Scheme 2.2 Schematic representation of a proton-jumping molecular system with fast enol-enolic equilibrium between structures la and lb. Scheme 2.2 Schematic representation of a proton-jumping molecular system with fast enol-enolic equilibrium between structures la and lb.
Scheme 2.3 Symmetrical enol-enolic system in which the structure with symmetry is a transition state of the proton transfer. Scheme 2.3 Symmetrical enol-enolic system in which the structure with symmetry is a transition state of the proton transfer.

See other pages where Enolates enolate is mentioned: [Pg.53]    [Pg.158]    [Pg.73]    [Pg.763]    [Pg.763]    [Pg.545]    [Pg.763]    [Pg.763]    [Pg.159]    [Pg.16]    [Pg.323]    [Pg.319]    [Pg.225]    [Pg.161]    [Pg.44]    [Pg.317]    [Pg.348]    [Pg.353]    [Pg.580]    [Pg.17]    [Pg.171]   
See also in sourсe #XX -- [ Pg.423 ]




SEARCH



© 2024 chempedia.info