Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quinoxaline polymers

In an earlier investigation by the authors (3) thiophene-quinoxaline polymers, ( ), were prepared and used in organic thin-film transistors. [Pg.183]

Diarylquinoxalines have been prepared in the search for antimalarial and antifertility" agents. They have been incorporated into light-sensitive copying compositions, and 2,3-diphenylquinoxaline has been used as a photosensitizer for the decarboxylation of carboxylic acids. Various phenylated quinoxaline polymers have been prepared, and polymers have also been obtained from 6-acryloylamino-2,3-diphenylquinoxaline... [Pg.237]

The decrease in intermolecular association (induced dipole-dipole interactions) is due to the lower heterocyclic content per repeat unit. The polyimide containing only pendant phenyl groups exhibited a Tg of 292 C, whereas substitution of two phenyl pendants with diphenylether groups lowers the Tg to 240 C. It is interesting to note that the same equivalent lowering of the Tg has been shown to occur for the as-triazine and quinoxaline polymer systems. ... [Pg.50]

Poly(phenylquinoxaline—arnide—imides) are thermally stable up to 430°C and are soluble in polar organic solvents (17). Transparent films of these materials exhibit electrical insulating properties. Quinoxaline—imide copolymer films prepared by polycondensation of 6,6 -meth5lene bis(2-methyl-3,l-benzoxazine-4-one) and 3,3, 4,4 -benzophenone tetracarboxyUc dianhydride and 4,4 -oxydianiline exhibit good chemical etching properties (18). The polymers are soluble, but stable only up to 200—300°C. [Pg.532]

Some representative backbone stmctures of PQs and PPQs and their T data are given in Table 1. As in other amorphous polymers, the Ts of PQs and PPQs are controlled essentially by the chemical stmcture, molecular weight, and thermal history. Several synthetic routes have been investigated to increase the T and also to improve the processibiUty of PPQ (71). Some properties of PPQ based on 2,3-di(3,4-diaminophenyl)quinoxaline and those of l,l-dichloro-2,2-bis(3,4-diaminophenyl)ethylene are summarized in Table 2. [Pg.536]

New heat-resistant polymers containing -iiitrophenyl-substituted quinoxaline units and imide rings as well as flexible amide groups have been synthesi2ed by polycondensation reaction of a dianainoquinoxaline derivative with diacid dichlorides (80). These polymers are easily soluble in polar aprotic solvents with inherent viscosities in the range of 0.3—0.9 dL/g in NMP at 20°C. AH polymers begin to decompose above 370°C. [Pg.537]

A considerable number of non-cross-linked aromatic and heterocyclic polymers has been produced. These include polyaromatic ketones, aromatic and heterocyclic polyanhydrides, polythiazoles, polypyrazoles, polytriazoles, poly-quinoxalines, polyketoquinolines, polybenzimidazoles, polyhydantoins, and polyimides. Of these the last two have achieved some technical significance, and have already been considered in Chapters 21 and 18 respectively. The most important polyimides are obtained by reacting pyromellitic dianhydride with an aromatic diamine to give a product of general structure (Figure 29.17). [Pg.847]

Diphenol/thiophenol is one of the most important polymer precursors for synthesis of poly(aryl ethers) or poly-(aryl sulfides) in displacement polymerizations. Commonly used bisphenols are 4,4 -isopropylidene diphenol or bisphenol-A (BPA) due to their low price and easy availability. Other commercial bisphenols have also been reported [7,24,25]. Recently, synthesis of poly(aryl ethers) by the reaction of new bisphenol monomers with activated aromatic dihalides has been reported. The structures of the polymer precursors are described in Table 2. Poly(aryl ether phenylquinoxalines) have been synthesized by Connell et al. [26], by the reaction of bisphenols containing a preformed quinoxaline ring with... [Pg.37]

A catch and release synthesis of tetrazoles and cyclic amidines has been reported making use of solid-supported oximes [94]. When bound sulpho-nyloximes, obtained by reacting polymer supported sulfonyl chloride with oximes, were reacted with nucleophiles, tetrazoles or cychc amidines were obtained (Scheme 19). Alternatively, the use of TMS-CN affords imino nitriles, which have been used as intermediates for the preparation of indoles, 1,2,3,4-tetrahydropyridines, quinoxalines and benzimidazoles. [Pg.147]

The preparation of helically well-ordered polymers with stable screw-sense, which is able to be transmitted to newly formed polymer main-chains effectively, is highly desired for the development of new methodology for the synthesis of optically active helical polymers. An aromatizing polymerization of 1,2-diisocyanobenzenes is promoted by methylpalladium(II) complexes, producing poly(quinoxaline-2,3-diyl)s.146-148 The polymerization proceeds with successive insertion of the two isocyano groups of the diisocyanobenzene to the carbon palladium bond of... [Pg.564]

As demonstrated in previous sections, the carbazole unit was introduced as a pendant group or as a chain member in major classes of EL polymers such as PPVs (95-105,141,177, 190) and PFs (62, 63, 242-245). A variety of 2,7-carbazole-derived polymers with different conjugated units, such as 2-alkoxy- and 2,5-dialkoxy-l,4-phenylene (549) and l,l -binaphtha-lene-6,6 -diyl (550 [658]), 2,5-pyridine (551), 2,7-fluorene (245 [345,346]), 2,5 -bithiophene (554 [345]), 5,8-quinoxaline (552), quinquethiophene-SjS -dioxide (450 [550]), 2,5-thiophene (553), 2,5-furan (555), and acetylene (556 [659]) were reported by Leclerc and coworkers... [Pg.231]

A better PLED performance was observed by Jenekhe and coworkers [173] for ITO/PEDOT/polymer/Al devices with quinoxaline-phenylene vinylene copolymers 586 and 587 as emitting layers. The el and maximum brightness were measured as 0.012 and 0.01%, and 120 and 35 cd/m2, respectively. The turn-on voltages of these devices were reasonably low, 6.0 and 4.0 V, respectively. The performance of PLEDs with polymer 586 was further improved by blending with 5wt% of a hole transport material, 1, l-Mstdi-d-tolylami-ii ophenyI )cycIohexane (TAPC) that enhanced the d lto 0.06% and the maximum brightness to 450 cd/m2. [Pg.236]

Excellent electron-transporting properties of quinoxaline (also demonstrated for noncon-jugated quinoxaline-containing polymer 588 [684] and quinoxaline-based polyether 589 [685]) resulted in a substantially decreased turn-on voltage of PPV/590 PLED (3.6 V), which is much lower than that of pure PPV in the same conditions (7 V). These diodes showed a maximum luminance of 710 cd/m2 (ca. 40 times brighter than the PPV diode at the same current density and voltage) [686]. [Pg.236]

Cured ethynyl-terminated ester oligomers prepared from the reaction of hydroxy-termi nated ester oligomers with 4-ethynyl benzoyl chloride exhibited higher Tgs and better solvent resistance than comparable unendcapped polymers (50). Biphenylene end-caps have been placed on imide (40, 51), quinoline (52, 53) and quinoxaline (53) oligomers. High temperatures (> 316°C"J are required to cure... [Pg.14]

Polymers ofthe loop and chain type (A) can be obtained after crystallization by slow diffusion of the metallic salts and the quinoxaline or pyrazine derivatives in two different phases in the presence of organic spacers such as pyrazine (prz) or 4,4 -bipyridine (bpy) [see Eq. (8)]. [Pg.73]

This type of dinuclear unit has been reported elsewhere and has been characterized with bis-2-pyridyl-pyrazine or quinoxaline both in Cu [31] and in Ag [32] compounds. However, until now such units have not been used as building blocks (loops) in the construction of coordination polymers, an aspect that is discussed below. Each ligand acts in a bidentate manner with one metal center and as a monodentate system with the other. The two rings that are coordinated to the same metal center are nearly coplanar but the other deviates clearly from this plane. In this way, the structure if this dinuclear unit is very well adapted to the preferred conformation of the free ligand. The relative disposition of the ligands allows the existence of face-to-face n-jt-stacking interactions between the quinoxaline and... [Pg.74]

The second synthetic route to PAE containing quinoxaline units involved the reaction of an aromatic dihydroxy quinoxaline or aromatic bis(hydroxy-quinoxaline) with activated aromatic difluoro compounds (Eq. (3)) [15]. The dihydroxy quinoxaline and bis(hydroxyquinoxaline) monomers were readily prepared from the condensation of 1,2-diaminobenzene with 4,4 -dihydroxyben-zil and aromatic bis(o-diamines) with 4-hydroxybenzil, respectively. The Tgs of a series of PAE containing quinoxaline units are presented in Tables 3 and 4. For these polymers, the trend for the Tg is sulfone > carbonyl > terephthaloyl-> isophthaloyl. This trend holds for most polymer families when polymers of similar molecular weights are compared. Several polyphenylquinoxalines of the same chemical structure as those in Table 3 were also prepared by the poly-... [Pg.73]

Attention was then turned to aromatic heterocyclic ladder polymers other than BBL. Due to the complexities in their synthesis, ladder polymers were not reported extensively in the literature at that time. A sample of polyfluoflavine (I) having an inherent viscosity in methanesulfonic acid of 2.5 was obtained from professor C. S. Marvel at the University of Arizona. The ladder polymer was prepared [5] from the A-B polycondensation of 2,3-dihydroxy-6,7-diamino-quinoxaline hydrochloride in PPA. Transparent blue sheets were observed on precipitation of this polymer from methanesulfonic acid, and when collected and dried, it formed gold films much like the color of the BBL films. It was felt at that time that all ladder polymers of sufficient molecular weight would form precipitated films. [Pg.261]

A great deal of literature attention has been devoted to polymers in this section as thermally stable polymers (B-80MI11101). While some very elegant syntheses have been conducted, the resulting polymers have been, for the most part, quite intractable materials not conducive to extensive screening for a variety of applications. Thus, aside from their bulk thermal performance, little else besides the conditions of synthesis is known about most of the polymers shown. Three notable exceptions about which considerable characterization and product information are available are poly(imides), poly(benzimidazoles) and poly(quinoxalines), and a short discussion is included concerning properties and applications of these polymers. [Pg.292]

Side chain quinoxaline functionalization has been achieved (77NKK556) by reaction of o-phenylenediamine (249) with benzil-functional polymers. Thus, reaction with polyamide... [Pg.314]


See other pages where Quinoxaline polymers is mentioned: [Pg.565]    [Pg.378]    [Pg.502]    [Pg.502]    [Pg.565]    [Pg.378]    [Pg.502]    [Pg.502]    [Pg.537]    [Pg.835]    [Pg.835]    [Pg.835]    [Pg.276]    [Pg.90]    [Pg.941]    [Pg.132]    [Pg.343]    [Pg.102]    [Pg.360]    [Pg.32]    [Pg.32]    [Pg.69]    [Pg.72]    [Pg.264]    [Pg.75]    [Pg.76]    [Pg.86]    [Pg.70]    [Pg.73]    [Pg.77]    [Pg.96]    [Pg.314]   
See also in sourсe #XX -- [ Pg.502 ]




SEARCH



© 2024 chempedia.info