Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene-quinone reactions

Poly (methyl methacrylate) was also subjected to mechanical reaction in a vibrating mill in common solvent for several monomers (ethylene, acrylic acid and its esters, acrylonitrile and styrene) at temperatures from —196 to 20° C (22). The formation of macroradicals and their reactions were followed by EPR (electron paramagnetic resonance). The macroradicals reacted with vinyl monomers at temperatures less than —100° C, while quinones underwent reaction as low as —196° C. The same experiments were performed also with polystyrene and polybutylenedimethacrylate. The radicals from polystyrene were more reactive than those from poly(methyl methacrylate). [Pg.12]

It is believed that the above dye monoradicals disproportionate to hydroquinones and quinones. Transfer reactions to solvent lead to formations of homopolymers. This gives high yields of graft copolymers of methyl methacrylate with cellulose. The same is true of acrylonitrile. On the other hand, only small quantities of graft copolymers form with styrene or vinyl acetate monomers. ... [Pg.461]

The free radicals initially formed are neutralized by the quinone stabilizers, temporarily delaying the cross-linking reaction between the styrene and the fumarate sites in the polyester polymer. This temporary induction period between catalysis and the change to a semisoHd gelatinous mass is referred to as gelation time and can be controUed precisely between 1—60 min by varying stabilizer and catalyst levels. [Pg.317]

As the quinone stabilizer is consumed, the peroxy radicals initiate the addition chain propagation reactions through the formation of styryl radicals. In dilute solutions, the reaction between styrene and fumarate ester foUows an alternating sequence. However, in concentrated resin solutions, the alternating addition reaction is impeded at the onset of the physical gel. The Hquid resin forms an intractable gel when only 2% of the fumarate unsaturation is cross-linked with styrene. The gel is initiated through small micelles (12) that form the nuclei for the expansion of the cross-linked network. [Pg.317]

Aminodienylesters. I the cycloaddition reactions of ferf-aminodienylester with a,p-unsaturated carbonyl compounds, styrenes and quinones [148]... [Pg.88]

Engler and coworkers [76] developed a new domino process which consists of a [5+3] cycloaddition of a p-quinone monoimide with a styrene derivative followed by a [3+2] or [3+3] cycloaddition. The reaction allows the formation of two additional rings and up to eight stereogenic centers, with high selectivity. The best results, with 58% yield of4-230, were obtained in the transformation of 4-227 and 4-228 in the presence of BF3 Et20 at -20 °C (Scheme 4.49). In addition, the diastereomer 4-231 was obtained in 16 % yield. It can be assumed that the cation 4-229 functions as an intermediate. The process also functions with quinones, though much less efficiently. [Pg.313]

A formal iron-catalyzed [3 + 2]-cycloaddition of styrene derivatives with benzoqui-none was reported by Itoh s group [96]. The process is believed to proceed via electron-transfer reactions mediated by a proposed Fe3+/Fe2+ couple, which generates a styrene radical cation and a semiquinone. These intermediates undergo stepwise addition to yield the benzofuran product 51 (Scheme 9.38). The reaction seems to be limited to electron-rich alkoxy-functionalized styrenes, as the Fe3+/Fe2+ redox couple is otherwise unable to transfer the electrons from the styrene to the quinone. [Pg.263]

Cycloaddition of styrene with p-quinone methides.2 In the presence of this Lewis acid, p-quinone methides and styrenes undergo a formal [3 +2]cycloaddi-tion to form dihydro-lff-indenes. The reaction shows some stereoselectivity. Thus the geometry of the (E)-styrene is largely retained (17 1) and only two of the four possible products are formed. Presumably, any electron-rich alkene could participate in this cycloaddition. [Pg.392]

Fig. 7-12. Reactions of phenolic /8-aryl ether and a-ether structures (1) during neutral sulfite pulping (Gierer, 1970). R = H, alkyl, or aryl group. The quinone methide intermediate (2) is sulfonated to structure (3). The negative charge of the a-sulfonic acid group facilitates the nucleophilic attack of the sulfite ion, resulting in /8-aryl ether bond cleavage and sulfonation. Structure (4) reacts further with elimination of the sulfonic acid group from a-position to form intermediate (5) which finally after abstraction of proton from /8-position is stabilized to a styrene-/8-sulfonic acid structure (6). Note that only the free phenolic structures are cleaved, whereas the nonphenolic units remain essentially unaffected. Fig. 7-12. Reactions of phenolic /8-aryl ether and a-ether structures (1) during neutral sulfite pulping (Gierer, 1970). R = H, alkyl, or aryl group. The quinone methide intermediate (2) is sulfonated to structure (3). The negative charge of the a-sulfonic acid group facilitates the nucleophilic attack of the sulfite ion, resulting in /8-aryl ether bond cleavage and sulfonation. Structure (4) reacts further with elimination of the sulfonic acid group from a-position to form intermediate (5) which finally after abstraction of proton from /8-position is stabilized to a styrene-/8-sulfonic acid structure (6). Note that only the free phenolic structures are cleaved, whereas the nonphenolic units remain essentially unaffected.
Fig. 7-25. Main reactions of the phenolic /8-aryl ether structures during alkali (soda) and kraft pulping (Gierer, 1970). R = H, alkyl, or aryl group. The first step involves formation of a quinone methide intermediate (2). In alkali pulping intermediate (2) undergoes proton or formaldehyde elimination and is converted to styryl aryl ether structure (3a). During kraft pulping intermediate (2) is instead attacked by the nucleophilic hydrosulfide ions with formation of a thiirane structure (4) and simultaneous cleavage of the /3-aryl ether bond. Intermediate (5) reacts further either via a 1,4-dithiane dimer or directly to compounds of styrene type (6) and to complicated polymeric products (P). During these reactions most of the organically bound sulfur is eliminated as elemental sulfur. Fig. 7-25. Main reactions of the phenolic /8-aryl ether structures during alkali (soda) and kraft pulping (Gierer, 1970). R = H, alkyl, or aryl group. The first step involves formation of a quinone methide intermediate (2). In alkali pulping intermediate (2) undergoes proton or formaldehyde elimination and is converted to styryl aryl ether structure (3a). During kraft pulping intermediate (2) is instead attacked by the nucleophilic hydrosulfide ions with formation of a thiirane structure (4) and simultaneous cleavage of the /3-aryl ether bond. Intermediate (5) reacts further either via a 1,4-dithiane dimer or directly to compounds of styrene type (6) and to complicated polymeric products (P). During these reactions most of the organically bound sulfur is eliminated as elemental sulfur.
Acrylate and styrene polymers as well as polysiloxanes with 11-phenoxy-naphthacene-5,12-quinone side groups (IIIB) were synthesized using the reaction of the active ester copolymers with 6-[(tyrosinebutylester)o-yl]-5,12-naphthacenequi-none.53... [Pg.272]

This reaction of styrene is very sensitive to changes in experimental conditions. It occurs more slowly at lower temperatures and can be almost permanently inhibited by storage at — 80°C (dry-ice temperature). It is accelerated by exposure to sunlight or oxygen and may be inhibited by small amounts of reagents such as quinone, C6H4O2, which is frequently... [Pg.599]

The construction and properties of monolayers has been well documented by Kuhn (1979) and the photochemical reactions which occur in such systems reviewed (Whitten et al., 1977). Molecules in monolayers are usually ordered and in the case of rru/i -azastilbenes irradiation of the ordered array produces excimer emission and dimers (Whitten, 1979 Quina et al, 1976 Quina and Whitten, 1977). This contrasts with what is found when the fra/jj-isomers of such compounds are incorporated into micelles. In such systems the predominant reaction is cis-trans isomerisation excimer emission is lacking. It is suggested that the lack of isomerisation in the fatty acid monolayers is due to the tight packing and consequent high viscosity of such systems. Styrene also dimerises in a fatty acid monolayer. Interestingly, the products formed on photo-oxidation of protoporphyrins are dependent upon whether the reaction is carried out in a monolayer or a micelle (Whitten et al., 1978). Zinc octa-ethylporphyrin exhibits excimer emission in monolayers (Zachariasse and Whitten, 1973). Porphyrins are photoreduced by amines in monolayers (Mercer-Smith and Whitten, 1979). Electron-transfer reactions have been carried out with monolayers of stearic acid containing chlorophyll and electron acceptors such as quinones (Janzen et al., 1979 Janzen and Bolton, 1979). [Pg.98]

Regioselectivity in the [2 + 2] cycloaddition reactions of 2-alkoxy-5-allyl-l,4-benzo-quinones with styrenes is controlled by the choice of Ti(FV) or SnCU Lewis acid (Eq. 81) [119]. These reactions are a classic example of the mechanistic variability often associated with seemingly modest changes in Lewis acid. [Pg.426]


See other pages where Styrene-quinone reactions is mentioned: [Pg.516]    [Pg.192]    [Pg.480]    [Pg.434]    [Pg.164]    [Pg.165]    [Pg.166]    [Pg.204]    [Pg.205]    [Pg.206]    [Pg.160]    [Pg.264]    [Pg.403]    [Pg.149]    [Pg.310]    [Pg.286]    [Pg.434]    [Pg.184]    [Pg.61]    [Pg.193]    [Pg.212]    [Pg.412]    [Pg.516]    [Pg.357]    [Pg.468]    [Pg.78]    [Pg.310]    [Pg.215]   
See also in sourсe #XX -- [ Pg.16 , Pg.547 , Pg.551 , Pg.559 , Pg.560 , Pg.564 , Pg.565 ]

See also in sourсe #XX -- [ Pg.16 , Pg.547 , Pg.551 , Pg.559 , Pg.560 , Pg.564 , Pg.565 ]




SEARCH



Quinone-styrene reaction Lewis-acid promoted

Quinones reaction

Styrene, reactions

© 2024 chempedia.info