Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quenching reaction products

Zimmerman and co-workers were also able to obtain some information regarding the multiplicities of the excited states responsible for the initial /9-cleavage through quenching and sensitization studies. It was found that both trans-to-cis and cis-to-trans isomerizations could be sensitized by chlorobenzene under conditions where the latter absorbed over 95% of the light. The same product ratio was obtained under these conditions as in the direct irradiation of the ketones. With 1,3-cyclohexadiene or 2,5-dimethyl-2,4-hexadiene as quenchers nearly 90% of the reaction of the trans isomer could be quenched. Again the ratio of the quenched reaction products was the same as in the unquenched reaction. The reaction of the cis isomer, on the other hand, could not be quenched by 1,3-cyclohexadiene or 2,5-dimethyl-2,4-... [Pg.94]

After the SO converter has stabilized, the 6—7% SO gas stream can be further diluted with dry air, I, to provide the SO reaction gas at a prescribed concentration, ca 4 vol % for LAB sulfonation and ca 2.5% for alcohol ethoxylate sulfation. The molten sulfur is accurately measured and controlled by mass flow meters. The organic feedstock is also accurately controlled by mass flow meters and a variable speed-driven gear pump. The high velocity SO reaction gas and organic feedstock are introduced into the top of the sulfonation reactor,, in cocurrent downward flow where the reaction product and gas are separated in a cyclone separator, K, then pumped to a cooler, L, and circulated back into a quench cooling reservoir at the base of the reactor, unique to Chemithon concentric reactor systems. The gas stream from the cyclone separator, M, is sent to an electrostatic precipitator (ESP), N, which removes entrained acidic organics, and then sent to the packed tower, H, where SO2 and any SO traces are adsorbed in a dilute NaOH solution and finally vented, O. Even a 99% conversion of SO2 to SO contributes ca 500 ppm SO2 to the effluent gas. [Pg.89]

A typical reactor operates at 600—900°C with no catalyst and a residence time of 10—12 s. It produces a 92—93% yield of carbon tetrachloride and tetrachloroethylene, based on the chlorine input. The principal steps in the process include (/) chlorination of the hydrocarbon (2) quenching of reactor effluents 3) separation of hydrogen chloride and chlorine (4) recycling of chlorine to the reactor and (i) distillation to separate reaction products from the hydrogen chloride by-product. Advantages of this process include the use of cheap raw materials, flexibiUty of the ratios of carbon tetrachloride and tetrachloroethylene produced, and utilization of waste chlorinated residues that are used as a feedstock to the reactor. The hydrogen chloride by-product can be recycled to an oxychlorination unit (30) or sold as anhydrous or aqueous hydrogen chloride. [Pg.509]

The Texaco gasifier and a similar unit developed by The Dow Chemical Company are pressurized entrained gasifiers. At the top pulverized coal is mixed with reaction gas and is blown down into the gasifier. The reaction products leave from the side, and ash is blown down to a water pool where it is quenched. These units have operated at an Eastman Kodak facUity in Kingsport, Tennessee and at the Coolwater power station in California for an integrated combined cycle power plant. [Pg.235]

A comparison of the configuration of the substrates and reaction products shows that the oxiranyl anions arc configurationally stable under the reaction conditions. Only one example is known in which isomerization was observed. When the ci.v-tm-butyl-substituted epoxysilane27 was metalated and quenched with 2-cyclohexenone, addition product 27 was obtained under inversion of the anionic center. Presumably the strain created in forcing the ter/-butyl and the trimethylsilyl group cis on the oxirane ring facilitates the isomerization process13. [Pg.126]

The enolate of the 1,4-adduct, obtained after the stereoselective Michael addition step, as discussed in the previous sections, may be quenched in situ with various electrophiles. The fact that additional stereogenic centers may be formed via such tandem Michael addition/quench-ing procedures, giving products with high diastereoselectivity in many cases, extends the scope of these methods substantially. Furthermore these procedures occasionally offer the possibility of reversing the syn/anti diastereoselection. In the next sections pertinent examples of diastereoselective inter- and intramolecular quenching reactions will be discussed. [Pg.992]

Neither the electronic absorption nor the emission spectrum of Re2Cl8 changes in the presence of the quenchers, and no evidence for the formation of new chemical species was observed in flash spectroscopic or steady-state emission experiments. The results of these experiments suggest that the products of the quenching reaction form a strongly associated ion pair, Re2Cl8 D+. [Pg.24]

The net quenching reaction in eq. 2, which leads to separated redox products capable of oxidizing and reducing water, relies on a series of electron transfer steps. The basic theme of this account is excited state and related electron transfer events which occur in such systems and the basis that we have for understanding them both experimentally and theoretically. [Pg.153]

A typical pressure time plot is shown in Fig. 23-8. After ignition, the pressure increases rapidly, reaches a peak, and then diminishes as the reaction products are consumed and the gases are quenched and cooled by the vessel wall. [Pg.12]


See other pages where Quenching reaction products is mentioned: [Pg.95]    [Pg.95]    [Pg.547]    [Pg.398]    [Pg.388]    [Pg.265]    [Pg.274]    [Pg.126]    [Pg.544]    [Pg.288]    [Pg.313]    [Pg.1281]    [Pg.77]    [Pg.149]    [Pg.926]    [Pg.266]    [Pg.127]    [Pg.184]    [Pg.13]    [Pg.291]    [Pg.65]    [Pg.227]    [Pg.304]    [Pg.19]    [Pg.43]    [Pg.11]    [Pg.130]    [Pg.171]    [Pg.26]    [Pg.26]    [Pg.26]    [Pg.35]    [Pg.129]    [Pg.1176]    [Pg.209]    [Pg.161]    [Pg.17]    [Pg.476]    [Pg.51]    [Pg.222]    [Pg.18]    [Pg.21]   
See also in sourсe #XX -- [ Pg.283 ]




SEARCH



Quenching reaction

© 2024 chempedia.info