Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantum mechanics spin orbitals

Since it is not possible to generate antisynnnetric combinations of products if the same spin orbital appears twice in each tenn, it follows that states which assign the same set of four quantum numbers twice cannot possibly satisfy the requirement P.j i = -ij/, so this statement of the exclusion principle is consistent with the more general symmetry requirement. An even more general statement of the exclusion principle, which can be regarded as an additional postulate of quantum mechanics, is... [Pg.30]

In our treatment of molecular systems we first show how to determine the energy for a given iva efunction, and then demonstrate how to calculate the wavefunction for a specific nuclear geometry. In the most popular kind of quantum mechanical calculations performed on molecules each molecular spin orbital is expressed as a linear combination of atomic orhilals (the LCAO approach ). Thus each molecular orbital can be written as a summation of the following form ... [Pg.61]

The fact that an electron has an intrinsic spin comes out of a relativistic formulation of quantum mechanics. Even though the Schrodinger equation does not predict it, wave functions that are antisymmetric and have two electrons per orbital are used for nonreiativistic calculations. This is necessary in order to obtain results that are in any way reasonable. [Pg.261]

In addition to total energy and gradient, HyperChem can use quantum mechanical methods to calculate several other properties. The properties include the dipole moment, total electron density, total spin density, electrostatic potential, heats of formation, orbital energy levels, vibrational normal modes and frequencies, infrared spectrum intensities, and ultraviolet-visible spectrum frequencies and intensities. The HyperChem log file includes energy, gradient, and dipole values, while HIN files store atomic charge values. [Pg.51]

For a quantum mechanical calculation, the single point calculation leads to a wave function for the molecular system and considerably more information than just the energy and gradient are available. In principle, any expectation value might be computed. You can get plots of the individual orbitals, the total (or spin) electron density and the electrostatic field around the molecule. You can see the orbital energies in the status line when you plot an orbital. Finally, the log file contains additional information including the dipole moment of the molecule. The level of detail may be controlled by the PrintLevel entry in the chem.ini file. [Pg.301]

In the classical picture of an electron orbiting round the nucleus it would not surprise us to discover that the electron and the nucleus could each spin on its own axis, just like the earth and the moon, and that each has an angular momentum associated with spinning. Unfortunately, although quantum mechanical treatment gives rise to two new angular momenta, one associated with the electron and one with the nucleus, this simple physical... [Pg.17]

There is a nice point as to what we mean by the experimental energy. All the calculations so far have been based on non-relativistic quantum mechanics. A measure of the importance of relativistic effects for a given atom is afforded by its spin-orbit coupling parameter. This parameter can be easily determined from spectroscopic studies, and it is certainly not zero for first-row atoms. We should strictly compare the HF limit to an experimental energy that refers to a non-relativistic molecule. This is a moot point we can neither calculate molecular energies at the HF limit, nor can we easily make measurements that allow for these relativistic effects. [Pg.187]

The Stern-Gerlach experiment demonstrated that electrons have an intrinsic angular momentum in addition to their orbital angular momentum, and the unfortunate term electron spin was coined to describe this pure quantum-mechanical phenomenon. Many nuclei also possess an internal angular momentum, referred to as nuclear spin. As in classical mechanics, there is a relationship between the angular momentum and the magnetic moment. For electrons, we write... [Pg.305]

Quantum mechanical model, 138-139 Quantum number A number used to describe energy levels available to electrons in atoms there are four such numbers, 140-142,159q electron spin, 141 orbital, 141... [Pg.695]

Lewis s theory of the chemical bond was brilliant, but it was little more than guesswork inspired by insight. Lewis had no way of knowing why an electron pair was so important for the formation of covalent bonds. Valence-bond theory explained the importance of the electron pair in terms of spin-pairing but it could not explain the properties of some molecules. Molecular orbital theory, which is also based on quantum mechanics and was introduced in the late 1920s by Mul-liken and Hund, has proved to be the most successful theory of the chemical bond it overcomes all the deficiencies of Lewis s theory and is easier to use in calculations than valence-bond theory. [Pg.238]

The microscopic rate constant is derived from the quantum mechanical transition probability by considering the system to be initially present in one of the vibronic levels on the initial potential surface. The initial level is coupled by spin-orbit interaction to the manifold of vibronic levels belonging to the final potential surface. The microscopic rate constant is then obtained, following the Fermi-Golden rule, as ... [Pg.94]

Jl is due to the linear velocity of the electrons (the orbital component) while Js is due to the spin of the electron. The quantum mechanical expressions for these currents are... [Pg.259]

Spin-orbit coupling problems are of a genuine quantum nature since a priori spin is a quantity that only occurs in quantum mechanics. However, already Thomas (Thomas, 1927) had introduced a classical model for spin precession. Later, Rubinow and Keller (Rubinow and Keller, 1963) derived the Thomas precession from a WKB-like approach to the Dirac equation. They found that although the spin motion only occurs in the first semiclassical correction to the relativistic classical electron motion, it can be expressed in merely classical terms. [Pg.97]

The first case has already been considered section 2.0 the second case leads to a strong classical spin-orbit coupling, which is reflected in a Hamiltonian nature of the classical combined dynamics. In both situations the procedure is to find a suitable approximate Hamiltonian Hq( ) that propagates coherent states exactly along appropriate classical spin-orbit trajectories (x(l,),p(t),n(l,)). (For problems with only translational degrees of freedom this has been suggested in (Heller, 1975) and proven in (Combescure and Robert, 1997).) Then one treats the full Hamiltonian as a perturbation of the approximate one and calculates the full time evolution in quantum mechanical perturbation theory (via the Dyson series), i.e., one iterates the Duhamel formula... [Pg.105]


See other pages where Quantum mechanics spin orbitals is mentioned: [Pg.148]    [Pg.40]    [Pg.169]    [Pg.177]    [Pg.2222]    [Pg.181]    [Pg.301]    [Pg.8]    [Pg.37]    [Pg.121]    [Pg.277]    [Pg.729]    [Pg.199]    [Pg.159]    [Pg.1017]    [Pg.1037]    [Pg.307]    [Pg.686]    [Pg.758]    [Pg.254]    [Pg.148]    [Pg.424]    [Pg.132]    [Pg.195]    [Pg.64]    [Pg.701]    [Pg.285]    [Pg.56]    [Pg.652]    [Pg.589]    [Pg.64]    [Pg.138]   
See also in sourсe #XX -- [ Pg.392 , Pg.393 , Pg.394 , Pg.395 , Pg.396 ]




SEARCH



Quantum orbital

Quantum-Mechanical Orbitals

Spin mechanisms

Spin quantum

© 2024 chempedia.info