Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantum-mechanical charge field method

The applications of continuum models to the study of solvent induced changes of the shielding constant are numerous. Solvent reaction field calculations differ mainly in the level of theory of the quantum mechanical treatment, the method used for the gauge invariance problem in the calculations of the shielding constants and the approaches used for the calculations of the charge interaction with the medium. [Pg.134]

If the species is charged then an appropriate Born term must also be added. The react field model can be incorporated into quantum mechanics, where it is commonly refer to as the self-consistent reaction field (SCRF) method, by considering the reaction field to a perturbation of the Hamiltonian for an isolated molecule. The modified Hamiltoniar the system is then given by ... [Pg.611]

Partial Least Squares (PLS) regression (Section 35.7) is one of the more recent advances in QSAR which has led to the now widely accepted method of Comparative Molecular Field Analysis (CoMFA). This method makes use of local physicochemical properties such as charge, potential and steric fields that can be determined on a three-dimensional grid that is laid over the chemical stmctures. The determination of steric conformation, by means of X-ray crystallography or NMR spectroscopy, and the quantum mechanical calculation of charge and potential fields are now performed routinely on medium-sized molecules [10]. Modem optimization and prediction techniques such as neural networks (Chapter 44) also have found their way into QSAR. [Pg.385]

In this paper a method [11], which allows for an a priori BSSE removal at the SCF level, is for the first time applied to interaction densities studies. This computational protocol which has been called SCF-MI (Self-Consistent Field for Molecular Interactions) to highlight its relationship to the standard Roothaan equations and its special usefulness in the evaluation of molecular interactions, has recently been successfully used [11-13] for evaluating Eint in a number of intermolecular complexes. Comparison of standard SCF interaction densities with those obtained from the SCF-MI approach should shed light on the effects of BSSE removal. Such effects may then be compared with those deriving from the introduction of Coulomb correlation corrections. To this aim, we adopt a variational perturbative valence bond (VB) approach that uses orbitals derived from the SCF-MI step and thus maintains a BSSE-free picture. Finally, no bias should be introduced in our study by the particular approach chosen to analyze the observed charge density rearrangements. Therefore, not a model but a theory which is firmly rooted in Quantum Mechanics, applied directly to the electron density p and giving quantitative answers, is to be adopted. Bader s Quantum Theory of Atoms in Molecules (QTAM) [14, 15] meets nicely all these requirements. Such a theory has also been recently applied to molecular crystals as a valid tool to rationalize and quantitatively detect crystal field effects on the molecular densities [16-18]. [Pg.105]

In the quantum mechanical continuum model, the solute is embedded in a cavity while the solvent, treated as a continuous medium having the same dielectric constant as the bulk liquid, is incorporated in the solute Hamiltonian as a perturbation. In this reaction field approach, which has its origin in Onsager s work, the bulk medium is polarized by the solute molecules and subsequently back-polarizes the solute, etc. The continuum approach has been criticized for its neglect of the molecular structure of the solvent. Also, the higher-order moments of the charge distribution, which in general are not included in the calculations, may have important effects on the results. Another important limitation of the early implementations of this method was the lack of a realistic representation of the cavity form and size in relation to the shape of the solute. [Pg.334]

Ligand field theory may be taken to be the subject which attempts to rationalize and account for the physical properties of transition metal complexes in fairly simple-minded ways. It ranges from the simplest approach, crystal field theory, where ligands are represented by point charges, through to elementary forms of molecular orbital theory, where at least some attempt at a quantum mechanical treatment is involved. The aims of ligand field theory can be treated as essentially empirical in nature ab initio and even approximate proper quantum mechanical treatments are not considered to be part of the subject, although the simpler empirical methods may be. [Pg.214]

The starting point of the creation of the theory of the many-electron atom was the idea of Niels Bohr [1] to consider each electron of an atom as orbiting in a stationary state in the field, created by the charge of the nucleus and the rest of the electrons of an atom. This idea is several years older than quantum mechanics itself. It allows one to construct an approximate wave function of the whole atom with the help of one-electron wave functions. They may be found by accounting for the approximate states of the passive electrons, in other words, the states of all electrons must be consistent. This is the essence of the self-consistent field approximation (Hartree-Fock method), widely used in the theory of many-body systems, particularly of many-electron atoms and ions. There are many methods of accounting more or less accurately for this consistency, usually named by correlation effects, and of obtaining more accurate theoretical data on atomic structure. [Pg.446]


See other pages where Quantum-mechanical charge field method is mentioned: [Pg.131]    [Pg.131]    [Pg.274]    [Pg.110]    [Pg.112]    [Pg.126]    [Pg.530]    [Pg.77]    [Pg.122]    [Pg.197]    [Pg.50]    [Pg.49]    [Pg.146]    [Pg.306]    [Pg.53]    [Pg.3]    [Pg.344]    [Pg.382]    [Pg.312]    [Pg.482]    [Pg.25]    [Pg.81]    [Pg.145]    [Pg.163]    [Pg.339]    [Pg.33]    [Pg.381]    [Pg.178]    [Pg.405]    [Pg.686]    [Pg.316]    [Pg.157]    [Pg.94]    [Pg.80]    [Pg.404]    [Pg.431]    [Pg.158]    [Pg.290]    [Pg.162]    [Pg.200]    [Pg.23]    [Pg.327]    [Pg.244]   
See also in sourсe #XX -- [ Pg.125 ]




SEARCH



Charge Methods

Charging methods

Field method

Mechanical methods

Quantum mechanical method

Quantum methods

© 2024 chempedia.info