Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantum experiment, sensitive

Our interest in quantum dot-sensitized solar cells (QDSSC) is motivated by recent experiments in the Parkinson group (UW), where a two-electron transfer from excitonic states of a QD to a semiconductor was observed [32]. The main goal of this section is to understand a fundamental mechanism of electron transfer in solar cells. An electron transfer scheme in a QDSSC is illustrated in Figure 5.22. As discussed in introduction, quantum correlations play a crucial role in electron transfer. Thus, we briefly describe the theory [99] in which different correlation mechanisms such as e-ph and e-e interactions in a QD and e-ph interactions in a SM are considered. A time-dependent electric field of an arbitrary shape interacting with QD electrons is described in a dipole approximation. The interaction between a SM and a QD is presented in terms of the tunneling Hamiltonian, that is, in... [Pg.299]

It can be observed from the Figure 1 that the sensitivity of I.I. system is quite low at lower thicknesses and improves as the thicknesses increase. Further the sensitivity is low in case of as observed images compared to processed images. This can be attributed to the quantum fluctuations in the number of photons received and also to the electronic and screen noise. Integration of the images reduces this noise by a factor of N where N is the number of frames. Another observation of interest from the experiment was that if the orientation of the wires was horizontal there was a decrease in the observed sensitivity. It can be observed from the contrast response curves that the response for defect detection is better in magnified modes compared to normal mode of the II tube. Further, it can be observed that the vertical resolution is better compared to horizontal which is in line with prediction by the sensitivity curves. [Pg.446]

The negative sign in equation (b 1.15.26) implies that, unlike the case for electron spins, states with larger magnetic quantum number have smaller energy for g O. In contrast to the g-value in EPR experiments, g is an inlierent property of the nucleus. NMR resonances are not easily detected in paramagnetic systems because of sensitivity problems and increased linewidths caused by the presence of unpaired electron spins. [Pg.1557]

The vast majority of single-molecule optical experiments employ one-photon excited spontaneous fluorescence as the spectroscopic observable because of its relative simplicity and inlierently high sensitivity. Many molecules fluoresce with quantum yields near unity, and spontaneous fluorescence lifetimes for chromophores with large oscillator strengths are a few nanoseconds, implying that with a sufficiently intense excitation source a single... [Pg.2485]

An alternative way of acquiring the data is to observe the signal. These experiments are referred to as reverse- or inverse-detected experiments, in particular the inverse HETCOR experiment is referred to as a heteronuclear multiple quantum coherence (HMQC) spectmm. The ampHtude of the H nuclei is modulated by the coupled frequencies of the C nuclei in the evolution time. The principal difficulty with this experiment is that the C nuclei must be decoupled from the H spectmm. Techniques used to do this are called GARP and WALTZ sequences. The information is the same as that of the standard HETCOR except that the F and F axes have been switched. The obvious advantage to this experiment is the significant increase in sensitivity that occurs by observing H rather than C. [Pg.407]

HC HMQC (heteronuclear multiple quantum coherence) and HC HSQC (heteronuclear single quantum coherence) are the acronyms of the pulse sequences used for inverse carbon-proton shift correlations. These sensitive inverse experiments detect one-bond carbon-proton connectivities within some minutes instead of some hours as required for CH COSY as demonstrated by an HC HSQC experiment with a-pinene in Fig. 2.15. [Pg.36]

However, with the advent of the superacid solvents, a multitude of long-lived stable carbonium ions have been made available for extended study. Clearly, then, the door is open to quantum 5ueld determinations, kinetic treatment, studies on the effects of various solvents and sensitizers and quenching experiments (compare the very recent study by Bethell and Clare, 1972). In short, the photochemistry of carbonium ions is still in its infancy and there is a wealth of information yet to be gained. [Pg.151]

SELINQUATE (Berger, 1988) is the selective ID counterpart of the 2D INADEQUATE experiment (Bax et al., 1980). The pulse sequence is shown in Fig. 7.4. Double-quantum coherences (DQC) are first excited in the usual manner, and then a selective pulse is applied to only one nucleus. This converts the DQC related to this nucleus into antiphase magnetization, which is refocused during the detection period. The experiment has not been used widely because of its low sensitivity, but it can be employed to solve a specific problem from the connectivity information. [Pg.369]

Phase cycling As employed in modern NMR experiments, repeating the pulse sequence with all the other parameters being kept constant and only the phases of the pulse (s) and the phase-sensitive detector reference being changed. The FIDs are acquired and coadded. The procedure is used to eliminate undesired coherences or artifact signals, or to produce certain desired effects (e.g., multiple-quantum filtration). [Pg.418]

To be fair, we must point out that this type of experiment is extremely sensitive to the parameters chosen. Various pulse sequences are available, including the original COLOC (Correlation by means of Long range Coupling) as well as experiments variously referred to as HMBC (Heteronuclear Multiple-Bond Correlation) and HMQC (Heteronuclear Multiple-Quantum Correlation). Depending on the parameters chosen, it is often not possible to suppress correlations due to one-bond coupling ... [Pg.45]

Often, experiments are carried out on specimens that emit only very weak fluorescence. For these cases, the most sensitive detectors should be used, for instance fast avalanche photodiodes or high quantum yield PMTs. These detectors may have somewhat longer dead-times causing longer exposure times but maximal sensitivity. [Pg.122]


See other pages where Quantum experiment, sensitive is mentioned: [Pg.134]    [Pg.200]    [Pg.98]    [Pg.448]    [Pg.1583]    [Pg.2061]    [Pg.2061]    [Pg.408]    [Pg.397]    [Pg.1070]    [Pg.7]    [Pg.259]    [Pg.271]    [Pg.273]    [Pg.332]    [Pg.1070]    [Pg.221]    [Pg.226]    [Pg.150]    [Pg.45]    [Pg.482]    [Pg.237]    [Pg.123]    [Pg.296]    [Pg.182]    [Pg.209]    [Pg.220]    [Pg.257]    [Pg.163]    [Pg.962]    [Pg.215]    [Pg.282]    [Pg.18]    [Pg.55]    [Pg.121]    [Pg.178]    [Pg.249]    [Pg.249]    [Pg.419]   
See also in sourсe #XX -- [ Pg.113 ]




SEARCH



Sensitization experiments

© 2024 chempedia.info