Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantitative structure-activity relationships inductive analysis

Crebelli, R., Andreoli, C., Carere, A., Conti, G., Conti, L., Cotta-Ramusino, M., Benigni, R. The induction of mitotic chromosome malsegregation in Aspergillus nidulans. Quantitative structure activity relationship (QSAR) analysis with chlorinated aliphatic hydrocarbons. Mutat. Res. 1992, 266, 117-134. [Pg.501]

The electronic properties of amino acid side chains are summarized in Table 3, and they represent a wide spectrum of measures. The NMR data are derived experimentally (37). The dipole (38), C mull, inductive, field, and resonance effects were derived from QM calculations (15). The VHSE5 (39) and Z3 (25) scales were developed for use in quantitative structure-activity relationship analysis of the biologic activity of natural and synthetic peptides. Both were derived from principal components analysis of assorted physico-chemical properties, which included NMR chemical shift data, electron-ion interaction potentials, charges, and isoelectric points. Therefore, these scales are composites rather than primary measures of electronic effects. The validity of these measures is indicated by their lack of overlap with hydrophobicity and steric parameters and by their ability to predict biologic activity of synthetic peptide analogs (25, 39). Finally, coefficients of electrostatic screening by amino acid side chains (ylocal and Ynon-local) were derived from an empirical data set (40), and they represent a composite of electronic effects. [Pg.22]

Classical Quantitative Structure-Activity Relationship Techniques The early QSAR models for calcium channel ligands were based on classical Hansch analysis and elucidated the structural requirements for the binding of molecules to their receptors [111-115], It was found that various steric (Bl, L), electronic (a), and hydrophobic (n) parameters or their combination correlated well with the potency of various DHPs [111]. QSAR analysis of another set of DHPs revealed good correlations between electronic properties (F-constants) of the phenyl ring substituents and binding affinities or functional potency [112] lipophilicity as well as ortho- and meta-substituents inductivity... [Pg.371]


See other pages where Quantitative structure-activity relationships inductive analysis is mentioned: [Pg.404]    [Pg.156]    [Pg.66]    [Pg.26]    [Pg.3352]   
See also in sourсe #XX -- [ Pg.127 ]




SEARCH



Inductive analysis

QUANTITATIVE RELATIONSHIPS

Quantitative Structure-Activity Relationships

Quantitative structur-activity relationships

Quantitative structure-activity

Quantitative structure-analysis relationships

Structural induction

© 2024 chempedia.info