Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quadrupole MS instrumentation

If the samples have not been subjected to strenuous chemical cleanup, or there are plasma-based spectral interferences to be considered, then high-resolution MS detection and/or interference correction equations may be required, rather than using quadrupole MS instrumentation. On the other hand, these two approaches are likely to introduce their own influence on the precision/accuracy of the measured isotopic ratio. [Pg.124]

Figure 5 Multiple charging of a horse heart myoglobin sample analyzed by a quadrupole MS instrument with electrospray ionization collected at (a) pH 6.0 and (b) pH 3.5. Figure 5 Multiple charging of a horse heart myoglobin sample analyzed by a quadrupole MS instrument with electrospray ionization collected at (a) pH 6.0 and (b) pH 3.5.
Triple quadrupole MS instruments have been the most common ones in studies involving lipid analysis, butnovel hybrid (quadrupoletime-of-flight, etc.)instruments are rapidly gaining popularity due to their ability for multiple precursor ion scans simultaneously. Besides ESI, atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), and matrix-assisted laser desorption ionization (MALDI) have been employed in analysis of lipids. However, these methods seem to have an advantage over ESI only in special cases. For instance, APPI and APCI allow analysis of sterols without derivatization, which is needed for ESI. [Pg.225]

MS/MS Instrumentation As was noted previously, a variety of instrument types can perform MS/MS experiments, but because of their popularity, we only discuss MS/MS experiments using triple quadrupole instruments. The principles can be applied to other types of instrumentation. [Pg.14]

Tandem quadrupole and magnetic-sector mass spectrometers as well as FT-ICR and ion trap instruments have been employed in MS/MS experiments involving precursor/product/neutral relationships. Fragmentation can be the result of a metastable decomposition or collision-induced dissociation (CID). The purpose of this type of instrumentation is to identify, qualitatively or quantitatively, specific compounds contained in complex mixtures. This method provides high sensitivity and high specificity. The instrumentation commonly applied in GC/MS is discussed under the MS/MS Instrumentation heading, which appears earlier in this chapter. [Pg.17]

This is probably the most widely used MS-MS instrument. The hardware, as the name snggests, consists of three sets of quadrupole rods in series (Figure 3.8). The second set of rods is not used as a mass separation device but as a collision cell, where fragmentation of ions transmitted by the first set of quadrupole rods is carried out, and as a device for focussing any product ions into the third set of quadrupole rods. Both sets of rods may be controlled to allow the transmission of ions of a single mjz ratio or a range of mjz values to give the desired analytical information. [Pg.63]

An MS-MS instrument only relatively recently made available commercially for LC-MS applications is the Q-ToF system, i.e. the combination of a quadrupole mass analyser for precursor-ion selection and a time-of-fiight analyser for production detection. As described earlier in Section 3.4.1.4, this instrument has the... [Pg.256]

Hybrid mass spectrometer An MS-MS instrument combining magnetic sector and quadrupole mass analysers. [Pg.306]

The most widely regarded approach to accomplish the determination of as many pesticides as possible in as few steps as possible is to use MS detection. MS is considered a universally selective detection method because MS detects all compounds independently of elemental composition and further separates the signal into mass spectral scans to provide a high degree of selectivity. Unlike GC with selective detectors, or even atomic emission detection (AED), GC/MS may provide acceptable confirmation of the identity of analytes without the need for further information. This reduces the need to re-inject a sample into a separate GC system (usually GC/MS) for pesticide confirmation. Through the use of selected ion monitoring (SIM), efficient ion-trap or quadrupole devices, and/or tandem mass spectrometry (MS/MS), modern GC/MS instruments provide LODs similar to or lower than those of selective detectors, depending on the analytes, methods, and detectors. [Pg.762]

The instrument scan mode called selected reaction monitoring (SRM) is generally used for quantitative applications. SRM is similar to selected ion monitoring (SIM) in single quadrupole MS. The difference is that a product ion from the decomposition reaction in the collision cell is measured instead of a single ion formed in the... [Pg.831]

Instrument Acquisition mode Ionization mode MS quadrupole MS source MSD transfer line heater Ion masses... [Pg.1286]

Various tandem MS instrument configurations have been developed, e.g. sector instruments, such as CBCE, CBCECB or CECBCE, and hybrid instruments, e.g. BCECQQ (B = magnetic sector analyser, E = electrostatic analyser, C = collision cell, Q = quadrupole mass spectrometer), all with specific performance. Sector mass spectrometers have been reviewed [168],... [Pg.388]

Quadrupoles are low-resolution MS instruments frequently used for molecular weight determination. QMS provides unit-mass resolution, sufficient dynamic range, good quantitation capabilities, and easy sample introduction without severe vacuum restrictions. The limited mass range (up to 4000 Da) generally does not pose problems in polymer/additive analysis. Some limitations of QMS in polymer research are ... [Pg.390]

Tables 6.27 and 6.31 show the main characteristics of ToF-MS. ToF-MS shows an optimum combination of resolution and sensitivity. ToF-MS instruments provide up to 40000 spectra s-1, a mass range exceeding 100000 (in principle unlimited), a resolution of 5000, and peak widths as short as 200 ms. This is better than quadruples and most ion traps can handle. Unlike the quadrupole-type instrument, the detector is detecting every introduced ion (high duty factor). This leads to a 20- to 100-times increase in sensitivity, compared to QMS used in scan mode. The mass range increases quadratically with the time range that is recorded. Only the ion source and detector impose the limits on the mass range. Mass accuracy in ToF-MS is sufficient to gain access to the elemental composition of a molecule. A single point is sufficient for the mass calibration of the instrument. ToF mass spectra are commonly calibrated using two known species, aluminium (27 Da) and coronene (300 Da). ToF is well established in combination with quite different ion sources like in SIMS, MALDI and ESI. Tables 6.27 and 6.31 show the main characteristics of ToF-MS. ToF-MS shows an optimum combination of resolution and sensitivity. ToF-MS instruments provide up to 40000 spectra s-1, a mass range exceeding 100000 (in principle unlimited), a resolution of 5000, and peak widths as short as 200 ms. This is better than quadruples and most ion traps can handle. Unlike the quadrupole-type instrument, the detector is detecting every introduced ion (high duty factor). This leads to a 20- to 100-times increase in sensitivity, compared to QMS used in scan mode. The mass range increases quadratically with the time range that is recorded. Only the ion source and detector impose the limits on the mass range. Mass accuracy in ToF-MS is sufficient to gain access to the elemental composition of a molecule. A single point is sufficient for the mass calibration of the instrument. ToF mass spectra are commonly calibrated using two known species, aluminium (27 Da) and coronene (300 Da). ToF is well established in combination with quite different ion sources like in SIMS, MALDI and ESI.
In recent years several new instruments have been developed based on different mass-spectrometer principles. Two different categories of ICP-MS instruments are currently commercially available low-resolution instruments (using either QMS, ITMS or ToF-MS) and focusing high-resolution instruments (DFS, FTMS). Selected specifications for these two categories are shown in Table 8.63. Both the quadrupole-based and the double-focusing instruments allow a sequential multielement measurement, whereas ICP-ToFMS allows... [Pg.655]


See other pages where Quadrupole MS instrumentation is mentioned: [Pg.345]    [Pg.155]    [Pg.174]    [Pg.311]    [Pg.3423]    [Pg.1248]    [Pg.768]    [Pg.818]    [Pg.784]    [Pg.46]    [Pg.54]    [Pg.908]    [Pg.28]    [Pg.751]    [Pg.454]    [Pg.101]    [Pg.280]    [Pg.454]    [Pg.345]    [Pg.155]    [Pg.174]    [Pg.311]    [Pg.3423]    [Pg.1248]    [Pg.768]    [Pg.818]    [Pg.784]    [Pg.46]    [Pg.54]    [Pg.908]    [Pg.28]    [Pg.751]    [Pg.454]    [Pg.101]    [Pg.280]    [Pg.454]    [Pg.612]    [Pg.105]    [Pg.14]    [Pg.55]    [Pg.459]    [Pg.654]    [Pg.175]    [Pg.57]    [Pg.217]    [Pg.217]    [Pg.340]    [Pg.430]    [Pg.142]    [Pg.143]    [Pg.148]    [Pg.306]   
See also in sourсe #XX -- [ Pg.454 ]




SEARCH



Instrumentation quadrupole

Instrumentation quadrupoles

Scan Modes for Tandem MS with Triple Quadrupole Instruments

© 2024 chempedia.info