Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyruvate carboxylase reaction catalyzed

Theoretically, a fall in concentration of oxaloacetate, particularly within the mitochondria, could impair the ability of the citric acid cycle to metabolize acetyl-CoA and divert fatty acid oxidation toward ketogenesis. Such a fall may occur because of an increase in the [NADH]/[NAD+] ratio caused by increased P-oxida-tion affecting the equilibrium between oxaloacetate and malate and decreasing the concentration of oxaloacetate. However, pyruvate carboxylase, which catalyzes the conversion of pyruvate to oxaloacetate, is activated by acetyl-CoA. Consequently, when there are significant amounts of acetyl-CoA, there should be sufficient oxaloacetate to initiate the condensing reaction of the citric acid cycle. [Pg.187]

MECHANISM FIGURE 16-16 The role of biotin in the reaction catalyzed by pyruvate carboxylase. Biotin is attached to the enzyme through an amide bond with the e-amino group of a Lys residue, forming biotinyl-enzyme. Biotin-mediated carboxylation reactions occur in two phases, generally catalyzed by separate active sites on the enzyme as exemplified by the pyruvate carboxylase reaction. In the first phase (steps to ), bicarbonate is converted to the more activated C02, and then used to carboxylate biotin. The bicarbonate is first activated by reaction with ATP to form carboxyphosphate (step ), which breaks down to carbon dioxide (step ). In effect, the... [Pg.619]

Propionyl-CoA is first carboxylated to form the d stereoisomer of methylmalonyl-CoA (Pig. 17—11) by propionyl-CoA carboxylase, which contains the cofactor biotin. In this enzymatic reaction, as in the pyruvate carboxylase reaction (see Pig. 16-16), C02 (or its hydrated ion, HCO ) is activated by attachment to biotin before its transfer to the substrate, in this case the propionate moiety. Formation of the carboxybiotin intermediate requires energy, which is provided by the cleavage of ATP to ADP and Pi- The D-methylmalonyl-CoA thus formed is enzymatically epimerized to its l stereoisomer by methylmalonyl-CoA epimerase (Pig. 17-11). The L-methylmal onyl -CoA then undergoes an intramolecular rearrangement to form succinyl-CoA, which can enter the citric acid cycle. This rearrangement is catalyzed by methylmalonyl-CoA mutase, which requires as its coenzyme 5 -deoxyadenosyl-cobalamin, or coenzyme Bi2, which is derived from vitamin B12 (cobalamin). Box 17—2 describes the role of coenzyme B12 in this remarkable exchange reaction. [Pg.642]

The prototypical biotin enzyme is pyruvate carboxylase, which catalyzes reaction (11). [Pg.247]

Alternatively, oxaloacetate can be made from pyruvate by the addition of CO2 in the mitochondrial matrix (see Figure 12-7). This anapleurotic reaction is catalyzed by pyruvate carboxylase. The pyruvate carboxylase reaction consumes an ATP bond and CO2. In eukaryotes, the oxaloacetate thus formed can then be shuttled out of the mitochondria by several pathways (see Chapter 11). [Pg.175]

When a molecule of glycerol is formed, a molecule of pyruvate cannot be transformed into ethanol following its decarboxylation into ethanal. In anaerobic conditions, oxaloacetate is the means of entry of pyruvate into the cytosolic citric acid cycle. Although the mitochondria are no longer functional, the enzymes of the tricarboxylic acids cycle are present in the cytoplasm. Pyruvate carboxylase (PC) catalyzes the carboxylation of pyruvate into oxaloacetate. The prosthetic group of this enzyme is biotin it serves as a CO2 transporter. The reaction makes use of an ATP molecule ... [Pg.63]

Step 1 of Figure 29.13 Carboxylation Gluconeogenesis begins with the carboxyl-afion of pyruvate to yield oxaloacetate. The reaction is catalyzed by pyruvate carboxylase and requires ATP, bicarbonate ion, and the coenzyme biotin, which acts as a carrier to transport CO2 to the enzyme active site. The mechanism is analogous to that of step 3 in fatty-acid biosynthesis (Figure 29.6), in which acetyl CoA is carboxylated to yield malonyl CoA. [Pg.1162]

Mitochondrial pyruvate carboxylase catalyzes the cat-boxylation of pymvate to oxaloacetate, an ATP-tequit-ing reaction in which the vitamin biotin is the coenzyme. Biotin binds CO2 from bicatbonate as carboxybiotin ptiot to the addition of the COj to pym-... [Pg.153]

The Jirst indirect route in glucose synthesis involves the formation of phosphoenolpyruvate from pyruvate without the intervention of pyruvate kinase. This route is catalyzed by two enzymes. At first, pyruvate is converted into oxaloacetate. This reaction occurs in the mitochondria as the pyruvate molecules enter them, and is catalyzed by pyruvate carboxylase according to the scheme... [Pg.186]

Vitamin H (biotin) is present in liver, egg yolk, and other foods it is also synthesized by the intestinal flora. In the body, biotin is covalently attached via a lysine side chain to enzymes that catalyze carboxylation reactions. Biotin-dependent carboxylases include pyruvate carboxylase (see p. 154) and acetyl-CoA carboxylase (see p. 162). CO2 binds, using up ATP, to one of the two N atoms of biotin, from which it is transferred to the acceptor (see p. 108). [Pg.368]

Table 16-2 shows the most common anaplerotic reactions, all of which, in various tissues and organisms, convert either pyruvate or phosphoenolpyruvate to ox-aloacetate or malate. The most important anaplerotic reaction in mammalian liver and kidney is the reversible carboxylation of pyruvate by C02 to form oxaloacetate, catalyzed by pyruvate carboxylase. When the citric acid cycle is deficient in oxaloacetate or any other intermediates, pyruvate is carboxylated to produce more oxaloacetate. The enzymatic addition of a carboxyl group to pyruvate requires energy, which is supplied by ATP—the free energy required to attach a carboxyl group to pyruvate is about equal to the free energy available from ATP. [Pg.617]

When intermediates are shunted from the citric acid cycle to other pathways, they are replenished by several anaplerotic reactions, which produce four-carbon intermediates by carboxylation of three-carbon compounds these reactions are catalyzed by pyruvate carboxylase, PEP carboxykinase, PEP carboxylase, and malic enzyme. Enzymes that catalyze carboxylations commonly employ biotin to activate C02 and... [Pg.620]

The first step in the conversion of pyruvate to PEP entails the carboxylation of pyruvate to form oxaloacetate. This reaction is catalyzed by pyruvate carboxylase. As in... [Pg.263]

If we add the equations for the reactions catalyzed by pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and nucleoside diphosphate kinase, we obtain the overall reaction for conversion of pyruvate to phosphoenolpyruvate. [Pg.264]

Eight enzyme-catalyzed reactions are involved in the conversion of acetyl-CoA into fatty acids. The first reaction is catalyzed by acetyl-CoA carboxylase and requires ATP. This is the reaction that supplies the energy that drives the biosynthesis of fatty acids. The properties of acetyl-CoA carboxylase are similar to those of pyruvate carboxylase, which is important in the gluconeogenesis pathway (see chapter 12). Both enzymes contain the coenzyme biotin covalently linked to a lysine residue of the protein via its e-amino group. In the last section of this chapter we show that the activity of acetyl-CoA carboxylase plays an important role in the control of fatty acid biosynthesis in animals. Regulation of the first enzyme in a biosynthetic pathway is a strategy widely used in metabolism. [Pg.420]

Fig. 1. Comparison of gluconeogenesis and glycolysis. The three steps of glycolysis that are irreversible are numbered. (1) Flexokinase in glycolysis is reversed by glucose 6-phosphatase in gluconeogenesis (2) PFK in glycolysis is reversed by fructose 1,6-bisphosphatase in gluconeogenesis (3) pyruvate kinase in glycolysis is reversed by two sequential reactions in gluconeogenesis catalyzed by pyruvate carboxylase and PEP carboxykinase. Fig. 1. Comparison of gluconeogenesis and glycolysis. The three steps of glycolysis that are irreversible are numbered. (1) Flexokinase in glycolysis is reversed by glucose 6-phosphatase in gluconeogenesis (2) PFK in glycolysis is reversed by fructose 1,6-bisphosphatase in gluconeogenesis (3) pyruvate kinase in glycolysis is reversed by two sequential reactions in gluconeogenesis catalyzed by pyruvate carboxylase and PEP carboxykinase.
Answer Oxaloacetate might be withdrawn for aspartate synthesis or for gluconeogenesis. Oxaloacetate is replenished by the anaplerotic reactions catalyzed by PEP carboxykinase, PEP carboxylase, malic enzyme, or pyruvate carboxylase (see Fig. 16-15, p. 632). [Pg.175]

In addition, hepatic fatty acid oxidation is also required to sustain gluconeogenesis. These fatty acids may be obtained from exogenous feeding or metabolism of fatty acids released from endogenous lipid stores. (3-Oxidation of fatty acids provides the acetyl-CoA needed to activate mitochondrial pyruvate carboxylase and the NADH used as the substrate in the reaction catalyzed by glyceraldehyde 3-phosphate dehydrogenase in the direction of gluconeogenesis (see Fig. 10-1). [Pg.112]

The formation of acetyl-CoA from pyruvate in animals is via the pyruvate dehydrogenase complex, which catalyzes the irreversible decarboxylation reaction. Carbohydrate is synthesized from oxaloacetate, which in turn is synthesized from pyruvate via pyruvate carboxylase. Since the pyruvate dehydrogenase reaction is irreversible, acetyl-CoA cannot be converted to pyruvate, and hence animals cannot realize a net gain of carbohydrate from acetyl-CoA. Because plants have a glyoxylate cycle and animals do not, plants synthesize one molecule of succinate and one molecule of malate from two molecules of acetyl-CoA and one of oxaloacetate. The malate is converted to oxaloacetate, which reacts with another molecule of acetyl-CoA and thereby continues the reactions of the glyoxylate cycle. The succinate is also converted to oxaloacetate via the enzymes of the citric acid cycle. Thus, one molecule of oxaloacetate is diverted to carbohydrate synthesis and, therefore, plants are able to achieve net synthesis of carbohydrate from acetyl-CoA. [Pg.361]

Today the metabolic network of the central metabolism of C. glutamicum involving glycolysis, pentose phosphate pathway (PPP), TCA cycle as well as anaplerotic and gluconeogenetic reactions is well known (Fig. 1). Different enzymes are involved in the interconversion of carbon between TCA cycle (malate/oxaloacetate) and glycolysis (pyruvate/phosphoenolpyruvate). For anaplerotic replenishment of the TCA cycle, C. glutamicum exhibits pyruvate carboxylase [20] and phosphoenol-pyruvate (PEP) carboxylase as carboxylating enzymes. Malic enzyme [21] and PEP carboxykinase [22,23] catalyze decarboxylation reactions from the TCA cycle... [Pg.23]

Pyruvate Carboxylase Pyruvate carboxylase catalyzes the car-boxylation of pyruvate to oxaloacetate - both the first committed step of gluconeogenesis from pyruvate and also an important anaplerotic reaction, permitting repletion of tricarboxylic acid cycle intermediates and hence fatty acid synthesis. The mammalian enzyme is activated aUosterically by acetyl CoA, which accumulates when there is a need for increased activity of pyruvate carboxylase to synthesize oxaloacetate to permit increased citric acid cycle activity or for gluconeogenesis (Attwood, 1995 Jitrapakdee and Wallace, 1999). [Pg.331]

Mammalian pyruvate carboxylase has four identical subunits, and the isolated monomer will catalyze the complete reaction. By contrast, three distinct subunits can be isolated from acetyl CoA carboxylase of Escherichia coli and spinach chloroplasts a biotinyl carrier protein, biotin carboxylase, and carboxyl transferase. [Pg.331]

The first reaction is catalyzed by pyruvate carboxylase and the second by phosphoenolpyruvate carboxykinase. The sum of these reactions is ... [Pg.677]


See other pages where Pyruvate carboxylase reaction catalyzed is mentioned: [Pg.370]    [Pg.545]    [Pg.546]    [Pg.545]    [Pg.546]    [Pg.59]    [Pg.745]    [Pg.750]    [Pg.133]    [Pg.158]    [Pg.270]    [Pg.371]    [Pg.84]    [Pg.547]    [Pg.788]    [Pg.119]    [Pg.430]    [Pg.11]    [Pg.323]    [Pg.218]    [Pg.227]    [Pg.34]    [Pg.76]   
See also in sourсe #XX -- [ Pg.263 , Pg.263 , Pg.295 ]




SEARCH



Carboxylase

Carboxylases

Pyruvate carboxylase

Pyruvate reactions

© 2024 chempedia.info