Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrroles annular tautomerism

Annular tautomers are prototropic tautomers in which the migrating proton is restricted to ring atoms. For these five-membered heterocycles, annular tautomerism can only occur with pyrrole 2 and its polycyclic derivatives. There is no authenticated case of the monocyclic pyrrolenine tautomeric forms 211 and 212 predominating, presumably due to the required loss of resonance energy in these nonaromatic tautomers . [Pg.133]

Systematic replacement of CH in pyrrole 1 (Chapter 2.3) by N leads to nine additional monocyclic heteroaromatic nitrogen systems 2-10 (Figure 1), which are known collectively as azoles. Annular tautomerism is an important feature of all azoles having an NH function. For example, the triazoles 4 and 6, the triazoles 5 and 7, and the tetrazoles 8 and 9 can equilibrate by proton transfer (see Section 2.4.5). N-Substituted derivatives cannot equilibrate. Tautomers of the parent ring systems of all the azoles except pentazole 10 are known TV-aryl derivatives of pentazole have been characterized . [Pg.140]

Table 42 gives an overview of annular tautomerism data for azoles in the gas phase and in solution or crystals. In the gas phase the stability of alternative tautomers largely depends on their relative aromaticities. In Section 2 A.4.2.2 it was noted that 1,2-relationships between pyrrole- and pyridine-type nitrogen atoms favor aromaticity (Figure 21) and this is consistent with the relative stabilities of triazole and tetrazole tautomers in the gas phase (Table 42) <2010T2695>. In solution (and crystals) other factors such as solvent polarity, hydrogen bonding, and temperature become important and the relative stabilities can be reversed. Polar solvents tend to stabilize the tautomer with the largest dipole moment and this probably accounts for the observation of both 2H-1,2,3-triazole (p = 0.12D) and H-1,2,3-triazole (p = 4.55D) in... Table 42 gives an overview of annular tautomerism data for azoles in the gas phase and in solution or crystals. In the gas phase the stability of alternative tautomers largely depends on their relative aromaticities. In Section 2 A.4.2.2 it was noted that 1,2-relationships between pyrrole- and pyridine-type nitrogen atoms favor aromaticity (Figure 21) and this is consistent with the relative stabilities of triazole and tetrazole tautomers in the gas phase (Table 42) <2010T2695>. In solution (and crystals) other factors such as solvent polarity, hydrogen bonding, and temperature become important and the relative stabilities can be reversed. Polar solvents tend to stabilize the tautomer with the largest dipole moment and this probably accounts for the observation of both 2H-1,2,3-triazole (p = 0.12D) and H-1,2,3-triazole (p = 4.55D) in...
Chemical shifts for aromatic azoles are recorded in Tables 17 and 18. Fast tautomerism renders two of the 13C chemical shifts equivalent for the NH derivatives (Table 17a), as in the proton spectra (Table 8a). However, data for the N-methyl derivatives (Table 17b) clearly indicate that the carbon adjacent to a pyridine-type nitrogen shows a chemical shift at lower field than that adjacent to a pyrrole-type TV-methyl group (in contrast to the H chemical shift behaviour). Solid-state studies on imidazole (and pyrazole) show there are three distinct signals for the annular carbon atoms (imidazole C(2), 136.3 C(4), 126.8 C(5), 115.3 ppm). Proton exchange does not occur in the solid, hence the spectra describe the structure in the crystal. Comparison with the corresponding chemical shifts for 1-methylimidazole (137.6, 129.3, 119.7 ppm) implies that tautomerism has been frozen in the solid state <1981CC1207>. Solid-state examination of 2,2/-bis-17/-imidazole also reveals frozen tautomerism. [Pg.167]


See other pages where Pyrroles annular tautomerism is mentioned: [Pg.628]    [Pg.249]    [Pg.138]    [Pg.249]    [Pg.315]    [Pg.89]    [Pg.405]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.215 ]




SEARCH



Annular

Annular tautomerism

© 2024 chempedia.info