Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrrole, aromaticity basicity

Problem 20.35 (a) What makes imidazole (Prob. 20.37a) aromatic (6) Explain why imidazole, unlike pyrrole, is basic. Which N is the basic site ... [Pg.468]

The synthons of porphyrin syntheses are the pyrroles, which in turn must be made from 1,4-difunctional synthons. These carbon skeletons are available by an aldol-type condensation of the enol of a 1,3-diketone with an a-nitrosylated acetoacetate (Knorr pyrrole synthesis. Scheme 1.3.4). The final reductive ring closure by Schiff base formation is again a reversible condensation reaction. After dehydration, however, a stable 7i-electron sextet is formed, which gives the resulting pyrrole aromatic stability. Hydrolysis of this enamine can now only occur in very strong acid. In water of modest acidity or basicity it is perfectly stable. [Pg.21]

Furthermore, an acyclic astin, astin J (293) has been isolated [137]. D, Cheng et al. reported this kind of acyclic peptide, asterinins A - C, from the same plant [138]. Base-catalyzed cleavage of astins A, B, and C with a P, y-dichlorinated proline resulted in acyclic peptides with pyrrole rings, which were considered to be produced by dechlorination and aromatization from Pro(Cl2) to pyrrole under basic conditions, following the cleavage of the amide bond in Pro. [Pg.340]

Laviron, Person, and Fournari [87] confirmed this form of reduction for the oximes of neutral aromatic and heterocyclic derivatives (furan, pyrrole), whereas basic heterocyclic derivatives (pyridine) only gave a two-electron wave for the unprotonated compound. Four-... [Pg.55]

Prepared by heating ammonium mucate, or from butyne-l,4-diol and ammonia in the presence of an alumina catalyst. The pyrrole molecule is aromatic in character. It is not basic and the imino-hydrogen atom can be replaced by potassium. Many pyrrole derivatives occur naturally, e.g. proline, indican, haem and chlorophyll. [Pg.336]

Pyrrole has a planar, pentagonal (C2 ) stmcture and is aromatic in that it has a sextet of electrons. It is isoelectronic with the cyclopentadienyl anion. The TT-electrons are delocalized throughout the ring system, thus pyrrole is best characterized as a resonance hybrid, with contributing stmctures (1 5). These stmctures explain its lack of basicity (which is less than that of pyridine), its unexpectedly high acidity, and its pronounced aromatic character. The resonance energy which has been estimated at about 100 kj/mol (23.9 kcal/mol) is intermediate between that of furan and thiophene, or about two-thirds that of benzene (5). [Pg.354]

The low basicity of pyrrole is a consequence of the loss of aromaticity which accompanies protonation on the ring nitrogen or on carbon 2 or carbon 3 of the ring. The thermodynamically most stable cation is the 2H-pyrrolium ion, and the p/sTa for protonation at C-2 has been recorded as -3.8 the corresponding pK values for protonation at C-3 and at nitrogen are -5.9 and ca. -10 (Scheme 7). [Pg.46]

Sulfonamides (R2NSO2R ) are prepared from an amine and sulfonyl chloride in the presence of pyridine or aqueous base. The sulfonamide is one of the most stable nitrogen protective groups. Arylsulfonamides are stable to alkaline hydrolysis, and to catalytic reduction they are cleaved by Na/NH3, Na/butanol, sodium naphthalenide, or sodium anthracenide, and by refluxing in acid (48% HBr/cat. phenol). Sulfonamides of less basic amines such as pyrroles and indoles are much easier to cleave than are those of the more basic alkyl amines. In fact, sulfonamides of the less basic amines (pyrroles, indoles, and imidazoles) can be cleaved by basic hydrolysis, which is almost impossible for the alkyl amines. Because of the inherent differences between the aromatic — NH group and simple aliphatic amines, the protection of these compounds (pyrroles, indoles, and imidazoles) will be described in a separate section. One appealing proj>erty of sulfonamides is that the derivatives are more crystalline than amides or carbamates. [Pg.379]

VV -values for bromoform and pyrrole, acidic liquids, against poly(vinyl chloride), an acidic polymer, and dimethyl sulfoxide, a predominantly basic liquid, against polyfmethyl methacrylate), a basic polymer, but large values for the acidic liquids against PMMA and the basic liquid against PVC. 2-Iodoethanol, a bifunctional liquid, showed appreciable -values with both polymers. Despite these results in line with expectations, other results based on wettability measurements are not so clear-cut. For example, Vrbanac [94] found significant apparent acid-base interactions of various aromatic liquids against poly(ethylene), presumably a neutral substrate. [Pg.40]

Nitrogen compounds in crudes may generally be classified into basic and non-basic categories. Basic nitrogen compounds are mainly those having a pyridine ring, and the non-basic compounds have a pyrrole structure. Both pyridine and pyrrole are stable compounds due to their aromatic nature. [Pg.16]

Although pyrrole appears to be both an amine and a conjugated diene, its chemical properties are not consistent with either of these structural features. Unlike most other amines, pyrrole is not basic—the pKa of the pyrrolin-ium ion is 0.4 unlike most other conjugated dienes, pyrrole undergoes electrophilic substitution reactions rather than additions. The reason for both these properties, as noted previously in Section 15.5, is that pyrrole has six 77 electrons and is aromatic. Each of the four carbons contributes one... [Pg.946]

Purine has three basic, pyridine-like nitrogens with lone-pair electrons in sp2 orbitals in the plane of the ring. The remaining purine nitrogen is nonbasic and pyrrole-like, with its lone-pair electrons as part of the aromatic i- electron system. [Pg.951]

Oxazole is a five-membered aromatic heterocycle. Would you expect oxazoie to be more basic or less basic than pyrrole Explain. [Pg.965]

The diazotization of heteroaromatic amines is basically analogous to that of aromatic amines. Among the five-membered systems the amino-azoles (pyrroles, diazoles, triazoles, tetrazoles, oxazoles, isooxazoles, thia-, selena-, and dithiazoles) have all been diazotized. In general, diazotization in dilute mineral acid is possible, but diazotization in concentrated sulfuric acid (nitrosylsulfuric acid, see Sec. 2.2) or in organic solvents using an ester of nitrous acid (ethyl or isopentyl nitrite) is often preferable. Amino derivatives of aromatic heterocycles without ring nitrogen (furan and thiophene) can also be diazotized. [Pg.16]

Solubility - The oxidized polymer (VIII) has a greater solubility than the original polymer (VII). It was found to be soluble in acetone, chloroform, benzene, DMF and DMSO. Unlike the polymer (VII), (VIII) was not soluble in formic acid or trifluoroacetic acid that was expected since the pyrrole moiety is less basic than pyrrolidine. In the oxidized polymer, the pair of unshared electrons on the nitrogen atom are contributing to the pyrrole ring aromaticity, therefore, unavailable for protonation as in the case of polymer (VII). A comparison of the solubilities is given in Table I. [Pg.134]

Electronic factors also influenced the outcomes of these cyclization reactions cyclization of pyrrole 84 to bicyclic amine 85 is catalyzed by the sterically open complex 79a. In this reaction, initial insertion into the Y - H bond occurred in a Markovnikov fashion at the more hindered olefin (Scheme 19) [48]. The authors proposed that the Lewis basic aromatic ring stabilizes the electrophilic catalyst during the hydrometallation step, overriding steric factors. In the case of pyrroles and indenes, the less Lewis basic nitrogen contained in the aromatic systems allowed for the cyclization of 1,1-disubstituted alkenes. [Pg.234]

Protonation, if forced upon pyrrole, is found to take place not on nitrogen but on the a-carbon atom (19). This occurs because incorporation of the nitrogen atom s lone pair of electrons into the aromatic 6jre system leaves the N atom positively polarised protons tend to be repelled by it, and are thus taken up by the adjacent a-carbon atom. The basicity situation rather resembles that already encountered with aniline (p. 70) in that the cation (19) is destabilised with respect to the neutral molecule (18a). The effect is much more pronounced with pyrrole, however, for to function as a base it has to lose all aromatic character, and consequent stabilisation this is reflected in its related pKa (-0-27) compared with aniline s of 4-62, i.e. pyrrole is a very weak base indeed. It can in fact function as an acid, albeit a very weak one, in that the H atom of the NH group may be removed by strong bases, e.g. eNH2 the resultant anion (20) then retains the aromatic character of pyrrole, unlike the cation (19) ... [Pg.73]

The resulting tetrahydropyrroles and tetrahydrothiophenes could be easily aromatized under basic conditions (Scheme 36), thus allowing a convenient access to a new class of pyrrole and thiophene derivatives, which have found application in the preparation of new organic materials [304-308]. [Pg.267]

Pyridine, like benzene, is an aromatic system with six jt electrons (see Section 11.3). The ring is planar, and the lone pair is held in an sp orbital. The increased s character of this orbital, compared with the sp orbital in piperidine, means that the lone pair electrons are held closer to the nitrogen and, consequently, are less available for protonation. This hybridization effect explains the lower basicity of pyridine compared with piperidine. Pyrrole is also aromatic, but there is a significant difference, in that both of the lone pair electrons are contributing to the six-jr-electron system. As part of the delocalized Jt electron system, the lone pairs are consequently not available for bonding to... [Pg.143]

Though we shall return to this again, one critical difference between pyridine and pyrrole to note here relates to basicity. Pyridine is a base because its nitrogen still carries a lone pair able to accept a proton. Pyrrole is not basic it has already used up its lone pair in contributing to the aromatic sextet. [Pg.407]


See other pages where Pyrrole, aromaticity basicity is mentioned: [Pg.1313]    [Pg.30]    [Pg.87]    [Pg.604]    [Pg.4]    [Pg.118]    [Pg.332]    [Pg.17]    [Pg.947]    [Pg.1021]    [Pg.716]    [Pg.43]    [Pg.87]    [Pg.326]    [Pg.424]    [Pg.426]    [Pg.667]    [Pg.153]    [Pg.114]    [Pg.332]    [Pg.98]    [Pg.99]   
See also in sourсe #XX -- [ Pg.923 , Pg.947 ]

See also in sourсe #XX -- [ Pg.923 , Pg.947 ]

See also in sourсe #XX -- [ Pg.755 , Pg.770 ]

See also in sourсe #XX -- [ Pg.950 , Pg.973 ]




SEARCH



Basic Aromatics

Pyrrole aromaticity

Pyrrole basicity

Pyrroles basicity

© 2024 chempedia.info