Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrrole allylation

N-(2-Propenyl)pyrrole and isomeric N-(fi,Z-l-propenyl)pyrroles, promising monomers and building blocks, have been synthesized by allylation of pyrrole with allyl chloride in the system KOH/DMSO. For instance, the pyrrole reacts with allyl chloride (room temperature, 1.5 h, molar ratio of pyrrole-allyl chloride-KOH-DMSO= 1 2 2.5 14) to give N-(2-propenyl)pyrrole in 88% yield (Scheme 2.121, Table 2.14) [586]. Apart from the major product, N,2- and N,3-di(2-propenyl)pyrroles in 8% overall yield are identified in the reaction mixture. [Pg.242]

Pyrroles do not react with alkyl halides in a simple fashion polyalkylated products are obtained from reaction with methyl iodide at elevated temperatures and also from the more reactive allyl and benzyl halides under milder conditions in the presence of weak bases. Alkylation of pyrrole Grignard reagents gives mainly 2-alkylated pyrroles whereas N-alkylated pyrroles are obtained by alkylation of pyrrole alkali-metal salts in ionizing solvents. [Pg.53]

Hydroxy group of 8-hyd oxy-2-cycloalkyl-2,3,4,6,ll,lla-hexahydro-l//-pyrazino[l,2-i]isoquinoline-l,4-diones was alkylated with allyl bromide, 2-(bromodifluoromethyl)pyridines, l-(bromodifluoromethyl)- and l-(bro-momethyl)benzenes, halomethyl derivatives of different heterocycles (pyridine, pyrazine, pyrazole, pyrrole, thiazole, thiophene) in the presence of CS2CO3 or K2CO3 (98MIP7). Hydroxy group of 8-hydroxy-2-cyclopentyl-... [Pg.313]

A family of interesting polycychc systems 106 related to pyrrolidines was obtained in a one-pot double intermolecular 1,3-dipolar cycloaddition, irradiating derivatives of o-allyl-sahcylaldehydes with microwaves in toluene for 10 min in presence of the TEA salt of glycine esters [71]. A very similar approach was previously proposed by Bashiardes and co-workers to obtain a one-pot multicomponent synthesis of benzopyrano-pyrrolidines 107 and pyrrole products 108 (Scheme 37). The latter cycloadducts were obtained when o-propargylic benzaldehydes were utihzed instead of o-allyhc benzalde-hydes, followed by in situ oxidation [72]. [Pg.234]

Furthermore, Jana et al. developed a FeCl3-catalyzed C3-selective Friedel-Crafts alkylation of indoles, using allylic, benzylic, and propargylic alcohols in nitromethane as solvent at room temperature. This method can also be used for the alkylation of pyrrole (Scheme 4). The reactions were complete within 2-3 h without the need of an inert gas atmosphere leading to the C-3-substitution product exclusively in moderate to good yields [20]. [Pg.5]

Replacement of the ethanolamine head group is also well tolerated. Substitution with a cyclopropyl (243) [37], allyl (244) or propargyl group (245) [164] all led to an increase in binding affinity compared to AEA. Replacement of the head group with aromatics is also allowed. The phenyl derivative (246) retains affinity at the CBi receptor [37], whereas the 2-substituted A-methyl pyrrole (247) has a 2-fold improved affinity compared to AEA [167]. Interestingly, the 3-substituted furan derivative (23) that has micromolar affinity for the AEA transporter (see above) does not bind to the CBi receptor, but has good affinity for the CB2 receptor [167]. These results are summarised in Table 6.20. [Pg.243]

Fused (5 5 5) heterocycle 28, along with 342, has been synthesized in 34% yield via an intramolecular nitrone cycloaddition, using l-allyl-2-pyrrole carboxaldehyde 340 as a starting material (Scheme 72) <1998JOC9279>. [Pg.680]

The asymmetric allylic alkylation (AAA) reaction has been adapted for use with pyrrole nucleophiles <06JACS6054>. For example, treatment of pyrrole 55 and cyclopentene 56 with a palladium catalyst in the presence of a chiral additive gave pyrrole 57 in up to 92% ee. The latter was elaborated into piperazinone-pyrrole natural product, agelastatin A 94. [Pg.143]

A gallium metal-mediated allylation of pyrrole led selectively to the formation of the 3-substituted pyrroles <06TL3535>. In contrast, a palladium-catalyzed allylation of pyrrole with allylic alcohols performed in the presence of triethylborane led to 2-substituted pyrroles <06H(67)535>. [Pg.145]

Scheme 6.186) [347]. The condensation of O-allylic and O-propargylic salicylalde-hydes with a-amino esters was carried out either in the absence of a solvent or - if both components were solids - in a minimal volume of xylene. All reactions performed under microwave conditions rapidly proceeded to completion within a few minutes and typically provided higher yields compared to the corresponding thermal protocols. In the case of intramolecular alkene cycloadditions, mixtures of hexa-hydrochromeno[4,3-b]pyrrole diastereoisomers were obtained, whereas transformations involving alkyne tethers provided chromeno[4,3-b]pyrroles directly after in situ oxidation with elemental sulfur (Scheme 6.186). Independent work by Pospisil and Potacek involved very similar transformations under strictly solvent-free conditions [348]. [Pg.227]

An interesting approach to the pyrrolizidine skeleton was devised wherein pyrrole-2-carboxaldehyde (70) underwent A-allylation under basic conditions and subsequent olefmation with ethyl p-tolylsulfinylmethanephosphonate to produce the pyrrolyl alkene 71 <00TL1983>. Intramolecular Heck reaction of the iodo species then produced the 1 -p-tolylsulfinyl-1,3-diene 72. [Pg.116]

Dipolar cycloaddition of nitrile oxide 425 with allyl bromide followed by hydrogenation of dihydroisoxazole derivative 426 (Scheme 1.54) gives a pyrrol-substituted steroid derivative 427 (466). [Pg.92]

Fttrstner has employed the Trost pyrrole synthesis in the first total synthesis of roseophilin, wherein this A-benzylpyrrole-ring forming step occurred in 70% yield [23]. Backvall has found that primary amines react with dienes under the guidance of Pd(II) to form pyrroles 170 in variable yields [121]. The intermediate Jt-allyl-palladium complexes are quite stable. [Pg.61]

Hence the positional selectivity is different from that of the furan additions to 417 (Scheme 6.90). Assuming diradical intermediates for these reactions [9], the different types of products are not caused by the nature of the allene double bonds of 417 and 450 but by the properties of the allyl radical subunits in the six-membered rings of the intermediates. Also N-tert-butoxycarbonylpyrrole intercepted 450 in a [4 + 2]-cycloaddition and brought about 455 in 29% yield. Pyrrole itself and N-methylpyr-role furnished their substituted derivatives of type 456 in 69 and 79% yield [155, 171b]. Possibly, these processes are electrophilic aromatic substitutions with 450 acting as electrophile, as has been suggested for the conversion of 417 into 442 by pyrrole (Scheme 6.90). [Pg.323]

The 5-dig-mode of cyclization has been applied in the synthesis of N-heterocycles. For example, treatment of the /i-allenyl dithiosemicarbazide 37 with Bu3SnH and AIBN in hot benzene furnishes the substituted 3H-pyrrole 38 in 41% yield and the isomeric heterocycle 39 in 30% yield (Scheme 11.13) [68], Iminyl radical 40 is formed via Bu3Sn addition to the thiocarbonyl group of the radical precursor 37 and fragmentation of the adduct (not shown). Nitrogen-centered radical 40 adds 5-dig-selectively to provide substituted allyl radical 41. The latter intermediate is trapped by Bu3SnH to furnish preferentially product 38 with an endocydic double bond. [Pg.718]

In a similar fashion, hydroformylation of N-allyl-pyrrols leads to 5,6-dihydroindolizines via a one-pot hydroformylation/cyclization/dehydration process (Scheme 27) [81,82]. The cyclization step represents an intramolecular electrophilic aromatic substitution in a-position of the pyrrole ring. This procedure was expanded to various substrates bearing substituents in the al-lyl and in the pyrrole unit. [Pg.92]

For example, rhodium catalyzed hydroformylation of 2-formyl-N-allyl-pyrrol gives an approx. 1 1 mixture of iso- and u-aldehydes. The latter cyclizes immediately in an aldol reaction followed by dehydration giving 7-formyl-5,6-indolizine in up to 46% (Scheme 29) [83]. Since here only one of the aldehyde groups can act as the enolate nucleophile this cyclization proceed with high regioselectivity (Scheme 29). [Pg.93]

The first example involving a rhodium catalyst in an ene reaction was reported by Schmitz in 1976. An intramolecular cyclization of a diene occurred to give a pyrrole when exposed to rhodium trichloride in isobutanol (Eq. 2) [15]. Subsequently to this work, Grigg utilized Wilkinson s catalyst to effect a similar cycloisomerization reaction (Eq. 3) [16]. Opplozer and Eurstner showed that a n -allyl-rhodium species could be formed from an allyl carbonate or acetate and intercepted intramolecularly by an alkene to afford 1,4-dienes (Eq. 4). Hydridotetrakis(triphenylphosphine)rhodium(l) proved to be the most efficient catalyst for this particular transformation. A direct comparison was made between this catalyst and palladium bis(dibenzylidene) acetone, in which it was determined that rhodium might offer an additional stereochemical perspective. In the latter case, this type of reaction is typically referred to as a metallo-ene reaction [17]. [Pg.152]

Radical cyclization of oxime ethers having allylic substiffients to five-membered rings including furan and pyrrole derivatives was described in reviews A thiophenol-promoted radical cyclization of oxime ethers into tetrahydrofurans was recently described. For example, oxime derivative 36 in the presence of thiophenol and azobisisobuty-ronitrile (AIBN) afforded substimted tetrahydrofurans 37 and 38 in a ratio 1.2-3 1 (equation 17) . Radical cyclization of oxime ethers 39 to tetrahydrofurans 40 was successfully realized in the presence of alkyl iodides and EtsB in refluxing toluene (equation 18) . ... [Pg.239]


See other pages where Pyrrole allylation is mentioned: [Pg.113]    [Pg.67]    [Pg.814]    [Pg.817]    [Pg.116]    [Pg.76]    [Pg.125]    [Pg.54]    [Pg.82]    [Pg.158]    [Pg.159]    [Pg.226]    [Pg.311]    [Pg.133]    [Pg.801]    [Pg.468]    [Pg.58]    [Pg.710]    [Pg.61]    [Pg.370]    [Pg.320]    [Pg.10]    [Pg.196]    [Pg.199]    [Pg.125]    [Pg.194]    [Pg.125]    [Pg.92]    [Pg.133]   
See also in sourсe #XX -- [ Pg.106 ]




SEARCH



3-Allyl-1 - pyrrole

3-Allyl-1 - pyrrole

Alkylation of Pyrroles with Allyl Halides

Pyrroles allylation

Pyrroles allylation

© 2024 chempedia.info