Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridoxamine 5-phosphate oxidase

An enzyme responsible for recycling PLP from PMP, the flavin mononucleotide (FMN)-dependent pyridoxamine-5-phosphate oxidase (EC 1.4.3.5) has recently been shown to be nonstereospecific (52-54). [Pg.390]

Figure 9.1. Interconversion of the vitamin Be vitamers. Pyridoxal kinase, EC 2.7.1.38 pyridoxine oxidase, EC 1.1.1.65 pyridoxamine phosphate oxidase, EC 1.4.3.5 and pyridoxal oxidase, EC 1.1.3.12. Relative molecular masses (Mr) pyridoxine, 168.3 (hydrochloride, 205.6) pyridoxal, 167.2 pyridoxamine, 168.3 (dihydrochloride, 241.1) pyridoxal phosphate, 247.1 pyridoxamine phosphate, 248.2 and 4-pyridoxlc acid, 183.2. Figure 9.1. Interconversion of the vitamin Be vitamers. Pyridoxal kinase, EC 2.7.1.38 pyridoxine oxidase, EC 1.1.1.65 pyridoxamine phosphate oxidase, EC 1.4.3.5 and pyridoxal oxidase, EC 1.1.3.12. Relative molecular masses (Mr) pyridoxine, 168.3 (hydrochloride, 205.6) pyridoxal, 167.2 pyridoxamine, 168.3 (dihydrochloride, 241.1) pyridoxal phosphate, 247.1 pyridoxamine phosphate, 248.2 and 4-pyridoxlc acid, 183.2.
A proportion of the vitamin Be in foods may be biologically unavailable after heating, as a result of the formation of (phospho)pyridoxyllysine by reduction of the alditnine (Schiff base) by which pyridoxal and the phosphate are bound to the e-amino groups of lysine residues in proteins. A proportion of this pyridoxyUysine may be useable, because it is a substrate for pyridoxamine phosphate oxidase to form pyridoxal and pyridoxal phosphate. However, it is also a vitamin Be antimetaboUte, and even at relatively low concentrations can accelerate the development of deficiency in experimental animals maintained on vitamin Be-deficient diets (Gregory, 1980a, 1980b). [Pg.234]

Clements ]E and Anderson BB (1980) Glntathione reductase activity and pyridoxine (pyridoxamine) phosphate oxidase activity in the red cell. Biochimica etBiophysica Acta 632,159-63. [Pg.420]

Fonda, M. L. (1988). Pyridoxamine phosphate oxidase activity in mammalian tissues. Comp. Biochem. Physiol B 90B, 731-737. [Pg.129]

Pyridoxamine phosphate serves as a coenzyme of transaminases, e.g., lysyl oxidase (collagen biosynthesis), serine hydroxymethyl transferase (Cl-metabolism), S-aminolevulinate synthase (porphyrin biosynthesis), glycogen phosphoiylase (mobilization of glycogen), aspartate aminotransferase (transamination), alanine aminotransferase (transamination), kynureninase (biosynthesis of niacin), glutamate decarboxylase (biosynthesis of GABA), tyrosine decarboxylase (biosynthesis of tyramine), serine dehydratase ((3-elimination), cystathionine 3-synthase (metabolism of methionine), and cystathionine y-lyase (y-elimination). [Pg.1290]

The phosphorylated vitamers are dephosphorylated by membrane-bound alkaline phosphatase in the intestinal mucosa pyridoxal, pyridoxamine, and pyridoxine are all absorbed rapidly by carrier-mediated diffusion. Intestinal mucosal cells have pyridoxine kinase and pyridoxine phosphate oxidase (see Figure 9.1), so that there is net accumulation of pyridoxal phosphate by metabolic trapping. Much of the ingested pyridoxine is released into the portal circulation as pyridoxal, after dephosphorylation at the serosal surface. [Pg.234]

Tissue uptake of vitamin Be is again by carrier-mediated diffusion of pyridoxal (and other unphosphorylated vitamers), followed by metabolic trapping by phosphorylation. Circulating pyridoxal and pyridoxamine phosphates are hydrolyzed by extracellular alkaline phosphatase. All tissues have pyridoxine kinase activity, but pyridoxine phosphate oxidase is found mainly in the liver, kidney, and brain. [Pg.234]

Gregory JF 3rd (1980a) Effects of epsilon-pyridoxyllysine and related compounds onliver and brain pyridoxal kinase and liver pyridoxamine (pyridoxine) 5 -phosphate oxidase. Journal of Biological Chemistry 255, 2355-9. [Pg.426]

Two possible mechanisms for the neurotoxicity of carbon disulfide have been suggested. One mechanism involves the formation of dithiocarbamates. The inhibitory effect of carbon disulfide on the activity of the copper-requiring enzyme dopamine- -hydroxylase was attributed to the formation of dithiocarbamates, which can complex copper (McKenna and DiStefano 1977b). Interference with the formation of this metabolite may be a potential strategy, albeit untested, to reduce neurotoxicity from carbon disulfide poisoning. An alternative mechanism postulated to explain the neurotoxic effect of carbon disulfide is the formation of a dithiocarbamate derivative, a form of vitamin B6, of pyridoxamine, with carbon disulfide (Vasak and Kopecky 1967). Since transaminases and amine oxidases require the pyridoxamine phosphate form of vitamin B6 as a cofactor, it was further postulated that these enzymes would be inhibited in carbon... [Pg.112]

Studies based on the use of an antivitamin, deoxypyri-doxine, have established that the daily requirement of the vitamin ranges between 1 and 2 mg in the human adult. A normal diet has been reported to provide 1-1.5 mg daily of the vitamin. Food appears to be the only source of the vitamin because most of the vitamin produced by the bacterial flora of the intestine is excreted in the feces, possibly after oxidation to 4-pyridoxic acid. The ingested vitamin is rapidly and completely absorbed, but the exact site of the absorption is not known. Although both pyridoxine and pyridoxamine can be excreted as such and are therefore normal constituents of human urine, part of the vitamin is oxidized to the 4-pyridoxic acid before excretion in the urine. Mammalian tissues contain at least two enzymes capable of oxidizing pyridoxine. Both enzymes seem to be flavoproteins. One attacks pyridoxine, the other attacks pyridoxine phosphate. The pyridoxine phosphate oxidase of liver has been purified 65 times. Although the enzyme was shown to act on pyridoxamine phosphate, pyridoxamine phosphate was oxidized only when the pH of the incubation mixture was raised to 10. Pyridoxine phosphate oxidase has no effect on pyridoxamine phosphate at physiological pH. [Pg.297]

DB McCormick, AH Merril. Pyridoxamine (pyridoxine) 5 -phosphate oxidase. In GP Tryfiates, ed. Vitamin B metabolism in growth. Westport, CT Food Nutrition Press, 1980, pp 1-26. [Pg.477]


See other pages where Pyridoxamine 5-phosphate oxidase is mentioned: [Pg.1098]    [Pg.37]    [Pg.536]    [Pg.57]    [Pg.440]    [Pg.471]    [Pg.71]    [Pg.590]    [Pg.71]    [Pg.1098]    [Pg.37]    [Pg.88]    [Pg.536]    [Pg.583]   
See also in sourсe #XX -- [ Pg.37 ]




SEARCH



Pyridoxamine 5 -phosphate

Pyridoxamine 5-phosphate oxidase and

Pyridoxamine phosphat

© 2024 chempedia.info