Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridoxal phosphate transamination reactions

Most amino acids lose their nitrogen atom by a transamination reaction in which the -NH2 group of the amino acid changes places with the keto group of ct-ketoglutarate. The products are a new a-keto acid plus glutamate. The overall process occurs in two parts, is catalyzed by aminotransferase enzymes, and involves participation of the coenzyme pyridoxal phosphate (PLP), a derivative of pyridoxine (vitamin UJ. Different aminotransferases differ in their specificity for amino acids, but the mechanism remains the same. [Pg.1165]

The mechanism of the first part of transamination is shown in Figure 29.14. The process begins with reaction between the a-amino acid and pyridoxal phosphate, which is covalently bonded to the aminotransferase by an iminc linkage between the side-chain -NTI2 group of a lysine residue and the PLP aldehyde group. Deprotonation/reprotonation of the PLP-amino acid imine in steps 2 and 3 effects tautomerization of the imine C=N bond, and hydrolysis of the tautomerized imine in step 4 gives an -keto acid plus pyridoxamine... [Pg.1166]

Pyridoxal phosphate mainly serves as coenzyme in the amino acid metabolism and is covalently bound to its enzyme via a Schiff base. In the enzymatic reaction, the amino group of the substrate and the aldehyde group of PLP form a Schiff base, too. The subsequent reactions can take place at the a-, (3-, or y-carbon of the respective substrate. Common types of reactions are decarboxylations (formation of biogenic amines), transaminations (transfer of the amino nitrogen of one amino acid to the keto analog of another amino acid), and eliminations. [Pg.1290]

GOT (AST is the more recent abbreviation) catalyzes the transamination of 1-aspartic acid in the presence of a-ketoglut-aric acid, with pyridoxal phosphate being a required co-enzyme. The reaction is ... [Pg.200]

Another interesting example is SHMT. This enzyme catalyzes decarboxylation of a-amino-a-methylmalonate with the aid of pyridoxal-5 -phosphate (PLP). This is an unique enzyme in that it promotes various types of reactions of a-amino acids. It promotes aldol/retro-aldol type reactions and transamination reaction in addition to decarboxylation reaction. Although the types of apparent reactions are different, the common point of these reactions is the formation of a complex with PLP. In addition, the initial step of each reaction is the decomposition of the Schiff base formed between the substrate and pyridoxal coenzyme (Fig. 7-3). [Pg.309]

The Schiff base can undergo a variety of reactions in addition to transamination, shown in Fig. 6.4 for example, racemization of the amino acid via the a-deprotonated intermediate. Many of these reactions are catalyzed by metal ions and each has its equivalent nonmetallic enzyme reaction, each enzyme containing pyridoxal phosphate as a coenzyme. Many ideas of the mechanism of the action of these enzymes are based on the behavior of the model metal complexes. [Pg.305]

Glutamate can then participate in the formation of other amino acids via the process called transamination. Transamination is the exchange of the amino group from an amino acid to a keto acid, and provides the most common process for the introduction of nitrogen into amino acids, and for the removal of nitrogen from them. The reaction is catalysed by a transaminase enzyme, and the coenzyme pyridoxal phosphate (PLP) is required. [Pg.598]

We have just noted the role that pyridoxal phosphate plays as a coenzyme (cofactor) in transamination reactions (see section 15.6). Pyridoxal 5 -phosphate (PLP) is crucial to a number of biochemical reactions. PLP, together with a number of closely related materials that are readily converted into PLP, e.g. pyridoxal, pyridoxine and pyridoxamine, are collectively known as vitamin Bg, which is essential for good health. [Pg.600]

Pyridoxal phosphate (4) is the most important coenzyme in amino acid metabolism. Its role in transamination reactions is discussed in detail on p. 178. Pyridoxal phosphate is also involved in other reactions involving amino acids, such as decarboxylations and dehydrations. The aldehyde form of pyridoxal phosphate shown here (left) is not generally found in free form. In the absence of substrates, the aldehyde group is covalently bound to the e-amino group of a lysine residue as aldimine ( Schiffs base ). Pyridoxamine phosphate (right) is an intermediate of transamination reactions. It reverts to the aldehyde form by reacting with 2-oxoacids (see p. 178). [Pg.108]

Among the NH2 transfer reactions, transaminations (1) are particularly important. They are catalyzed by transaminases, and occur in both catabolic and anabolic amino acid metabolism. During transamination, the amino group of an amino acid (amino acid 1) is transferred to a 2-oxoacid (oxoacid 2). From the amino acid, this produces a 2-oxo-acid (a), while from the original oxoacid, an amino acid is formed (b). The NH2 group is temporarily taken over by enzyme-bound pyridoxal phosphate (PLP see p. 106), which thus becomes pyridoxamine phosphate. [Pg.178]

The active form of vitamin Be, pyridoxai phosphate, is the most important coenzyme in the amino acid metabolism (see p. 106). Almost all conversion reactions involving amino acids require pyridoxal phosphate, including transaminations, decarboxylations, dehydrogenations, etc. Glycogen phosphory-lase, the enzyme for glycogen degradation, also contains pyridoxal phosphate as a cofactor. Vitamin Be deficiency is rare. [Pg.368]

Vitamin Bg is a mixture of six interrelated forms pyridoxine (or pyridoxol) (Figure 19.23), pyri-doxal, pyridoxamine, and their 5 -phosphates derivatives. Interconversion is possible between all forms. The active form of the vitamin is pyridoxal phosphate, which is a coenzyme correlated with the function of more than 60 enzymes involved in transamination, deamination, decarboxylation, or desulfuration reactions. [Pg.636]

Pyridoxal phosphate is the coenzyme for the enzymic processes of transamination, racemization and decarboxylation of amino-acids, and for several other processes, such as the dehydration of serine and the synthesis of tryptophan that involve amino-acids (Braunstein, 1960). Pyridoxal itself is one of the three active forms of vitamin B6 (Rosenberg, 1945), and its biochemistry was established by 1939, in considerable part by the work of A. E. Braunstein and coworkers in Moscow (Braunstein and Kritzmann, 1947a,b,c Konikova et al 1947). Further, the requirement for the coenzyme by many of the enzymes of amino-acid metabolism had been confirmed by 1945. In addition, at that time, E. E. Snell demonstrated a model reaction (1) for transamination between pyridoxal [1] and glutamic acid, work which certainly carried with it the implication of mechanism (Snell, 1945). [Pg.4]

Isoniazid reacts with pyridoxal phosphate to form a hydrazone (Fig. 7.42), which is a very potent inhibitor of pyridoxal phosphate kinase. The hydrazone has a much greater affinity for the enzyme (100—lOOOx) than the normal substratepyridoxal. The result of this is a depletion of tissue pyridoxal phosphate. This cofactor is of importance particularly in nervous tissue for reactions involving decarboxylation and transamination. The decarboxylation reactions are principally affected however, with the result that transamination reactions assume a greater importance. [Pg.340]

FIGURE 18-4 Enzyme-catalyzed transaminations. In many aminotransferase reactions, a-ketoglutarate is the amino group acceptor. All aminotransferases have pyridoxal phosphate (PLP) as cofactor. Although the reaction is shown here in the direction of transfer of the amino group to a-ketoglutarate, it is readily reversible. [Pg.660]

An early step in the catabolism of amino acids is the separation of the amino group from the carbon skeleton. In most cases, the amino group is transferred to a-ketoglutarate to form glutamate. This transamination reaction requires the coenzyme pyridoxal phosphate. [Pg.665]

The amino acid and nucleotide biosynthetic pathways make repeated use of the biological cofactors pyridoxal phosphate, tetrahydrofolate, and A-adenosylmethionine. Pyridoxal phosphate is required for transamination reactions involving glutamate and for other amino acid transformations. One-carbon transfers require S-adenosyhnethionine and tetrahydrofolate. Glutamine amidotransferases catalyze reactions that incorporate nitrogen derived from glutamine. [Pg.841]

The phosphate ester of the aldehyde form of vitamin B6, pyridoxal phosphate (pyridoxal-P or PLP), is required by many enzymes catalyzing reactions of amino acids and amines. The reactions are numerous, and pyridoxal phosphate is surely one of nature s most versatile catalysts. The story begins with biochemical transamination, a process of central importance in nitrogen metabolism. In 1937, Alexander Braunstein and Maria Kritzmann, in Moscow, described the transamination reaction by which amino groups can be transferred from one carbon skeleton to another.139 140 For example, the amino group of glutamate can be transferred to the carbon skeleton of oxaloacetate to form aspartate and 2-oxoglutarate (Eq. 14-24). [Pg.737]

Figure 14-5 Some reactions of Schiff bases of pyridoxal phosphate, (a) Formation of the quinonoid intermediate, (b) elimination of a (3 substituent, and (c) transamination. The quinonoid-carbanionic intermediate can react in four ways (1—4) if enzyme specificity and substrate structure allow. Figure 14-5 Some reactions of Schiff bases of pyridoxal phosphate, (a) Formation of the quinonoid intermediate, (b) elimination of a (3 substituent, and (c) transamination. The quinonoid-carbanionic intermediate can react in four ways (1—4) if enzyme specificity and substrate structure allow.
Acetamidodeoxyhexoses. A further modification of the 4-keto-inter-mediate has been independently shown by Ashwell and by Strominger and associates (Table I, References 20, 21, 22, 23). Transamination reactions with L-glutamate as the amino donor and pyridoxal phosphate as coenzyme led to formation of 3-amino 3,6-dideoxy- and 4-amino 4,6-dideoxyhexoses, respectively. Acetylation with acetyl coenzyme A yields the naturally-occurring N-acetyl amino sugar derivatives. [Pg.397]

Pyndoxal phosphate is also a cofactor for transamination reactions, In these reactions, an amino group is transferred from an amino acid to an or-keto acid, thus founing a new amino acid and a new or-keto acid, Transamination reactions are important for the synthesis of amino acids from non-protein metabolites and for the degradation of amino acids for energy production. Since pyridoxal phosphate is intimately involved ill amino add metabolism, the dietary requirement for vitamin B6 increases as the protein content of the diet increases. [Pg.1701]

There is an important biochemical counterpart of the deamination reaction that utilizes pyridoxal phosphate, 7, as the aldehyde. Each step in the sequence is catalyzed by a specific enzyme. The a-amino group of the amino acid combines with 7 and is converted to a keto acid. The resulting pyridoxamine then reacts to form an imine with a different a-keto acid, resulting in formation of a new a-amino acid and regenerating 7. The overall process is shown in Equation 25-6 and is called transamination. It is a key part of the process whereby amino acids are metabolized. [Pg.1224]

NMR studies have been carried out on Schiff bases derived from pyridoxal phosphate and amino acids, since they have been proposed as intermediates in many important biological reactions such as transamination, decarboxylation, etc.90 The pK.d values of a series of Schiff bases derived from pyridoxal phosphate and a-amino adds, most of which are fluorinated (Figure 11), have been derived from H and19F titration curves.91 The imine N atom was found to be more basic and more sensitive to the electron-withdrawing effect of fluorine than the pyridine N atom. Pyridoxal and its phosphate derivative are shown in Figure 12a. The Schiff base formation by condensation of both with octopamine (Figure 12b) in water or methanol solution was studied by 13C NMR. The enolimine form is favoured in methanol, while the ketoamine form predominates in water.92... [Pg.726]

The full series of intermediates in a transamination is shown in figure 10.5a. After protonation at the aldimine carbon of pyridoxal-5 -phosphate (step 3), hydrolysis (step 4) forms an a-keto acid and pyridoxamine-5 -phosphate. The reverse of this sequence with a second a-keto acid (steps 5 through 8) completes the transamination reaction. [Pg.202]

The a-amino groups are removed from amino acids by a process called transamination. The acceptor for this reaction is usually the a-keto acid called a-ketoglutarate which results in the formation of glutamate and the corresponding a-keto acid. The coenzyme of all transaminases is pyridoxal phosphate which is derived from vitamin B6 and which is transiently converted during transamination into pyridoxamine phosphate. [Pg.373]

The amino acid is then hydrolyzed to form an a-keto acid and pyridoxamine phosphate, the a-amino group having been temporarily transferred from the amino acid substrate on to pyridoxal phosphate (Fig. 5). These steps constitute one half of the overall transamination reaction. The second half occurs by a reversal of the above reactions with a second a-keto acid reacting with the pyridoxamine phosphate to yield a second amino acid and regenerate the enzyme-pyridoxal phosphate complex (Fig. 5). [Pg.377]

The reactions catalyzed by transaminases are anergonic as they do not require an input of metabolic energy. They are also freely reversible, the direction of the reaction being determined by the relative concentrations of the amino acid-keto acid pairs. Pyridoxal phosphate is not just used as the coenzyme in transamination reactions, but is also the coenzyme for several other reactions involving amino acids including decarboxylations, deaminations, racemizations and aldol cleavages. [Pg.377]

Other reactions that mimic the enzymic processes that require pyridoxal phosphate also have been realized. Werle and Koch reported the nonenzymic decarboxylation of histine (9). The racemization of alanine occurs in preference to its transamination when aqueous solutions with polyvalent cations are maintained at pH 9.5. Other amino acids are likewise racemized the order of rates is Phe, Met > Ala > Val > lieu. At lower pH, the dominant reaction is transamination, with pH maxima varying from 4.3-8 with the nature of the metal ion used as catalyst. [Pg.26]

Transamination, often also referred to as aminotransfer, is applied to those enzymatic reactions in which an amino group is exchanged between an amino acid and an a-keto acid. This type of reaction is catalyzed by a group of transferases called transaminases or aminotransferases. They are active in both the cytosol and the mitochondria of most cells. An essential prosthetic group of such enzymes is pyridoxal phosphate, and the reaction is generally of the ping-pong type. [Pg.548]

Decarboxylation, or loss of the a-carboxyl group as C02, is another reaction common to most amino acids. It, too, requires pyridoxal phosphate as a coenzyme. Decarboxylation reactions are irreversible. For example, see Figure 20.5, which shows the decarboxylation of histidine to produce histamine. Table 20.6 lists transamination and decarboxylation products of some representative amino acids. [Pg.549]

The interest in the mechanisms of SchifF base hydrolysis stems largely from the fact that the formation and decomposition of SchifF base linkages play an important role in a variety of enzymatic reactions, for example, carbonyl transfers involving pyridoxal phosphate, aldol condensations, /3-decarboxylations and transaminations. The mechanisms for the formation and hydrolysis of biologically important SchifF bases, and imine intermediates, have been discussed by Bruice and Benkovic (1966) and by Jencks (1969). As the consequence of a number of studies (Jencks, 1959 Cordes and Jencks, 1962, 1963 Reeves, 1962 Koehler et al., 1964), the mechanisms for the hydrolysis of comparatively simple SchifF bases are reasonably well understood. From the results of a comprehensive kinetic investigation, the mechanisms for the hydrolysis of m- and p-substituted benzylidine-l,l-dimethylethylamines in the entire pH range (see, for example, the open circles in Fig. 13) have been discussed in terms of equations (23-26) (Cordes and Jencks, 1963) ... [Pg.337]


See other pages where Pyridoxal phosphate transamination reactions is mentioned: [Pg.675]    [Pg.20]    [Pg.348]    [Pg.675]    [Pg.1313]    [Pg.271]    [Pg.211]    [Pg.660]    [Pg.662]    [Pg.662]    [Pg.672]    [Pg.840]    [Pg.738]    [Pg.913]    [Pg.20]    [Pg.87]    [Pg.814]   


SEARCH



Phosphation reactions

Pyridoxal phosphat

Pyridoxal phosphate

Pyridoxal phosphate-dependent reactions transamination

Pyridoxal, reactions

Transamination

Transamination Reactions of Other Pyridoxal Phosphate Enzymes

Transamination reaction

Transaminitis

© 2024 chempedia.info