Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridines nucleophilic aromatic

In 1904, Zincke reported that treatment of Al-(2,4-dinitrophenyl)pyridinium chloride (1) with aniline provided a deep red salt that subsequently transformed into A-phenyl pyridinium chloride 5 (Scheme 8.4.2). Because the starting salt 1 was readily available from the nucleophilic aromatic substitution reaction of pyridine with 2,4-dinitrochlorobenzene, the Zincke reaction provided access to a pyridinium salt (5) that would otherwise require the unlikely substitution reaction between pyridine and... [Pg.355]

Bifunctional catalysis in nucleophilic aromatic substitution was first observed by Bitter and Zollinger34, who studied the reaction of cyanuric chloride with aniline in benzene. This reaction was not accelerated by phenols or y-pyridone but was catalyzed by triethylamine and pyridine and by bifunctional catalysts such as a-pyridone and carboxylic acids. The carboxylic acids did not function as purely electrophilic reagents, since there was no relationship between catalytic efficiency and acid strength, acetic acid being more effective than chloracetic acid, which in turn was a more efficient catalyst than trichloroacetic acid. For catalysis by the carboxylic acids Bitter and Zollinger proposed the transition state depicted by H. [Pg.414]

Pyridine A-oxides were converted to tetrazolo[l,5-a]pyridines 172 by heating in the presence sulfonyl or phosphoryl azides and pyridine in the absence of solvent <06JOC9540>. 3-R-5-Trinitromethyltetrazolo[l,5-a]-l,3,5-triazin-7-ones 173 have been prepared from the alkylation of 5-trinitromethyltetrazolo[l,5-a]-l,3,5-triazin-7-one silver salt with different alkylation agents <06CHE417>. The use of 2-fluorophenylisocyanide in the combinatorial Ugi-tetrazole reaction followed by a nucleophilic aromatic substitution afforded tricylic tetrazolo[l,5-a]quinoxaline 174 in good yields and with high diversity <06TL2041>. [Pg.234]

A wide variety of other heterocyclic ring systems can conceivably serve as the conjugated backbone in nonlinear organic molecules. We will give examples from preliminary work on two of these, the thiazole and pyrimidine heterocycle derivatives 65-72 in Table VIII. These two heterocycles were chosen because the appropriate haloderivatives are commercially available as starting materials for nucleophilic aromatic substitution. The pyrimidine derivatives are of particular interest since their absorption edges ( 400 nm) are shifted hypsochromically an additional 30 nm relative even to the pyridines. [Pg.75]

Imidazo[l,5-tf]pyridines are aromatic systems in which the bridgehead nitrogen N-4 contributes to the aromaticity with its lone pair. Therefore, this nitrogen atom is not nucleophilic and electrophilic attacks occur at the N-2 position. SgAr occurs at C-l, but also sometimes at C-3, depending on the conditions used (Figure 3). [Pg.435]

Pyridine, on the other hand, is more reactive than benzene towards nucleophilic aromatic substitution. This is effectively reaction towards the C=N imine function, as described above. Attack is... [Pg.411]

Replacement of one of the benzene rings in a fenamic acid by pyridine interestingly leads to a compound which exhibits antihypertensive rather than antiinflammatory activity. Preparation of this agent starts with nucleophilic aromatic substitution of anthranilic acid (8) on 4-chloropyri-dine. The product (9) is converted to its acid chloride (10), and this is conden.sed with piperidine. There is thus obtained ofornine (11) [3]. [Pg.1450]

Halopyridines and other re-deficient nitrogen heterocycles are excellent reactants for nucleophilic aromatic substitution.112 Substitution reactions also occur readily for other heterocyclic systems, such as 2-haloquinolines and 1-haloisoquinolines, in which a potential leaving group is adjacent to a pyridine-type nitrogen. 4-Halopyridines and related heterocyclic compounds can also undergo substitution by nucleophilic addition-elimination but are somewhat less reactive. [Pg.724]

Tertiary benzylic nitriles are useful synthetic intermediates, and have been used for the preparation of amidines, lactones, primary amines, pyridines, aldehydes, carboxylic acids, and esters. The general synthetic pathway to this class of compounds relies on the displacement of an activated benzylic alcohol or benzylic halide with a cyanide source followed by double alkylation under basic conditions. For instance, 2-(2-methoxyphenyl)-2-methylpropionitrile has been prepared by methylation of (2-methoxyphenyl)acetonitrile using sodium amide and iodomethane. In the course of the preparation of a drug candidate, the submitters discovered that the nucleophilic aromatic substitution of aryl fluorides with the anion of a secondary nitrile is an effective method for the preparation of these compounds. The reaction was studied using isobutyronitrile and 2-fluoroanisole. The submitters first showed that KHMDS was the superior base for the process when carried out in either THF or toluene (Table I). For example, they found that the preparation of 2-(2-methoxyphenyl)-2-methylpropionitrile could be accomplished h... [Pg.253]

Scheme 47. The addition-elimination mechanism of nucleophilic aromatic fluorination in the pyridine series. Scheme 47. The addition-elimination mechanism of nucleophilic aromatic fluorination in the pyridine series.
Nucleophilic aromatic substitutions Pyridine is more reactive than benzene towards nucleophilic aromatic substitutions because of the presence of electron-withdrawing nitrogen in the ring. Nucleophilic aromatic substitutions of pyridine occur at C-2 (or C-6) and C-4 positions. [Pg.154]

Nucleophilic aromatic substitutions Pyrimidine is more reactive than pyridine towards nucleophilic aromatic substitution, again due to the presence of the second electron-withdrawing nitrogen in the pyrimidine ring. Leaving groups at C-2, C-4 or C-6 positions of pyrimidine can be displaced by nucleophiles. [Pg.162]

Recently37, the importance of CT complexes in the chemistry of heteroaromatic N-oxides has been investigated in nucleophilic aromatic substitutions. Electron acceptors (tetracyanoethylene and p-benzoquinones) enhance the electrophilic ability of pyridine-N-oxide (and of quinoline-N-oxide) derivatives by forming donor-acceptor complexes which facilitate the reactions of nucleophiles on heteroaromatic substrates. [Pg.372]

Predict the product of nucleophilic aromatic substitution reactions of pyridine and substituted pyridines. [Pg.251]

Pyridine is deactivated toward electrophilic attack, but it is activated toward attack by electron-rich nucleophiles that is, it is activated toward nucleophilic aromatic substitution. If there is a good leaving group at either the 2-position or the 4-position, a nucleophile... [Pg.898]

We have considered nucleophilic aromatic substitution of pyridine at the 2-position and 3-position but not at the 4-position. Complete the three possible cases by showing the mechanism for the reaction of methoxide ion with 4-chloropyridine. Show how the intermediate is stabilized by delocalization of the charge onto the nitrogen atom. [Pg.899]

Now the tosylation—under the usual conditions—followed by the nucleophilic aromatic substitution (Chapter 23). The leaving group is ortho to two electron-withdrawing groups, and so the substitution pattern is right for nucleophilic aromatic substitution. The nucleophile is 4-methoxyphenol, deprotonated by pyridine. [Pg.647]

The first step is a nucleophilic aromatic substitution. In the second step the nitro group is reduced to an amino group without any effect on the pyridine ring—another piece of evidence for its aromaticity. Finally, one amino group is acylated in the presence of three others. [Pg.1151]


See other pages where Pyridines nucleophilic aromatic is mentioned: [Pg.45]    [Pg.159]    [Pg.355]    [Pg.19]    [Pg.359]    [Pg.165]    [Pg.466]    [Pg.217]    [Pg.412]    [Pg.261]    [Pg.24]    [Pg.74]    [Pg.240]    [Pg.768]    [Pg.880]    [Pg.277]    [Pg.247]    [Pg.250]    [Pg.231]    [Pg.278]    [Pg.121]    [Pg.880]    [Pg.18]    [Pg.898]    [Pg.899]    [Pg.1293]   


SEARCH



Aromatic nucleophiles

Nucleophilic Attack on N Aromatics Pyrrole and Pyridine

Nucleophilic aromatic

Nucleophilic aromatic of pyridines

Nucleophilic aromatic substitution of pyridines

Nucleophilic substitution, aromatic pyridine

Pyridine aromaticity

Pyridines derivatives, nucleophilic aromatic substitution

Pyridines nucleophilic

© 2024 chempedia.info