Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridines electrophilic substitution

Quinoline forms part of quinine (structure at the head of this chapter) and isoquinoline forms the central skeleton of the isoquinoline alkaloids, which we will discuss at some length in Chapter 51. In this chapter we need not say much about quinoline because it behaves rather as you would expect—its chemistry is a mixture of that of benzene and pyridine. Electrophilic substitution favours the benzene ring and nucleophilic substitution favours the pyridine ring. So nitration of quinoline gives two products—the 5-nitroquinolines and the 8-nitroquinolines—in about equal quantities (though you will realize that the reaction really occurs on protonated quinoline. [Pg.1174]

Despite its V excessive character (340), thiazole, just as pyridine, is resistant to electrophilic substitution. In both cases the ring nitrogen deactivates the heterocyclic nucleus toward electrophilic attack. Moreover, most electrophilic substitutions, which are performed in acidic medium, involve the protonated form of thiazole or some quaternary thiazolium derivatives, whose reactivity toward electrophiles is still lower than that of the free base. [Pg.99]

The precise numerical values of the calculated electron densities are unimportant, as the most important feature is the relative electron density thus, the electron density at the pyrazine carbon atom is similar to that at an a-position in pyridine and this is manifest in the comparable reactivities of these positions in the two rings. In the case of quinoxaline, electron densities at N-1 and C-2 are proportionately lower, with the highest electron density appearing at position 5(8), which is in line with the observation that electrophilic substitution occurs at this position. [Pg.159]

Electrophilic substitution reactions of unsubstituted quinoxaline or phenazine are unusual however, in view of the increased resonance possibilities in the transition states leading to the products one would predict that electrophilic substitution should be more facile than with pyrazine itself (c/. the relationship between pyridine and quinoline). In the case of quinoxaline, electron localization calculations (57JCS2521) indicate the highest electron density at positions 5 and 8 and substitution would be expected to occur at these positions. Nitration is only effected under forcing conditions, e.g. with concentrated nitric acid and oleum at 90 °C for 24 hours a 1.5% yield of 5-nitroquinoxaline (19) is obtained. The major product is 5,6-dinitroquinoxaline (20), formed in 24% yield. [Pg.163]

The electrophilic substitution of thiophene is much easier than that of benzene thus, thiophene is protonated in aqueous sulphuric acid about 10 times more rapidly than benzene, and it is brominated by molecular bromine in acetic acid about 10 times more rapidly than benzene. Benzene in turn is between 10 and lo times more reactive than an uncharged pyridine ring to electrophilic substitution. [Pg.44]

Pyrrolo[2,3-6]pyridine, 2,3-dihydro-electrophilic substitution, 4, 503 nitration, 4, 512 synthesis, 4, 520... [Pg.822]

There is another important factor in the low reactivity of pyridine derivatives toward electrophilic substitution. The —N=CH— unit is basic because the electron pair on nitrogen is not part of the aromatic n system. The nitrogen is protonated or complexed with a Lewis acid under many of the conditions typical of electrophilic substitution reactions. The formal positive charge present at nitrogen in such species further reduces the reactivity toward electrophiles. [Pg.570]

For pyridine, the reactivity toward electrophilic substitution is 3 > 4, 2. The ring nitrogen acts as a strongly destabilizing internal electron-withdrawing substituent in the 2- and 4-intermediates. The nitrogen also deactivates the 3-position, but less so than the 2- and 4-positions. [Pg.570]

Pyridine lies near one extreme in being far less reactive than benzene toward substitution by electrophilic reagents. In this respect it resembles strongly deactivated aromatic compounds such as nitrobenzene. It is incapable of being acylated or alkylated under Friedel-Crafts conditions, but can be sulfonated at high temperature. Electrophilic substitution in pyridine, when it does occur, takes place at C-3. [Pg.507]

The consequences of this replacement gives pyridine a reduced susceptibility to electrophilic substitution compared to benzene, while being more susceptible to... [Pg.302]

In their acidity, basicity, and the directive influence exerted on electrophilic substitution reactions in benzenoid nuclei, acylamino groups show properties which are intermediate between those of free amino and hydroxyl groups, and, therefore, it is at first surprising to find that the tautomeric behavior of acylaminopyridines closely resembles that of the aminopyridines instead of being intermediate between that of the amino- and hydroxy-pyridines. The basicities of the acylaminopyridines are, indeed, closer to those of the methoxy-pyridines than to those of the aminopyridines, the position of the tautomeric equilibrium being determined by the fact that the acyl-iminopyridones are strong bases like the iminopyridones and unlike the pyridones themselves. Thus, relative to the conversion of an... [Pg.420]

Bromination at 450°C hardly occurs, but when the pumice is impregnated with ferrous or cuprous bromide a much better yield of 2,4,6-tribromopyridine is obtained. When pyridine is brominated at 180°C in the presence or absence of impregnated pumice only 2-bromo- and 2,6-dibromopyridine are formed. These facts are not consistent with an electrophilic substitution, which should take place at the 3-position, On the other hand, the high temperature coefficient of the reaction (cf. Table XV) and the fact that ultraviolet light has no effect on the reaction argue against a simple free-radical sub-stitutiond ... [Pg.172]

It should be expected that the orientation and rate of electrophilic substitution in the isoxazole nucleus would be affected by both hetero atoms. Because of the electron-accepting effect of the nitrogen atom, electrophilic substitution of the isoxazole nucleus should proceed less readily than in the case of benzene and should occur essentially at the position jS to the nitrogen atom, just as in pyridine and other azoles. Simultaneously the electron-donating oxygen atom should facilitate such reactions in isoxazole as compared with the substitution in pyridine. These predictions are confirmed by the available experimental evidence. [Pg.382]

In the reactions of electrophilic substitution, isoxazole is far less active than the five-membered heterocycles with one hetero atom and pyrazole. It is closer to pyridine, but more reactive. [Pg.389]

The presently known electrophilic substitution reactions all occur at the 4-position of the isoxazole nucleus, corresponding to the j3-position in pyridine. Thus the influence of the nitrogen atom is predominant. The introduction of alkyl and, particularly, aryl substituents into the isoxazole nucleus markedly increases its reactivity (on the other hand, during nitration and sulfonation the isoxazole nucleus also activates the phenyl nucleus). [Pg.389]

The mechanisms of the electrophilic substitutions in the isoxazole nucleus have not yet been studied. They should not differ fundamentally from those usually accepted for the substitution of aromatic systems but the structural specificity of the isoxazole ring might give rise to some peculiarities, as recently specially discussed.One important point is that isoxazole shows a clearcut tendency to form coordination compounds. Just as pyridine and other azoles, isoxazoles coordinate with halogens and the salts of heavy metals, for example of cadmium,mercury,zinc. Such coordination... [Pg.389]

The chemistry of these polycyclic heterocycles is just what you miglu expect from a knowledge of the simpler heterocycles pyridine and pyrrole Quinoline and isoquinoline both have basic, pyridine-like nitrogen atoms, anc both undergo electrophilic substitutions, although less easily than benzene Reaction occurs on the benzene ring rather than on the pyridine ring, and r mixture of substitution products is obtained. [Pg.951]

A kinetic study of the electrophilic substitution of pyridine-N-oxides has also been carried out50b,c. Rate-acidity dependencies were unfortunately given in graphical form only and the rate parameters (determined mostly over a 30 °C range) are given in Table 4b. There is considerable confusion in Tables 3 and 5 of the original paper, where the rate coefficients are labelled as referring to the free base. In fact the rate coefficients for the first three substituted compounds in... [Pg.20]

Furthermore, the strongly metallic character of selenium weakens the C-Se bond and thus favors reactions involving opening of the ring. The basicity of the three heterocycles is approximately in the same order, the nitrogen atom of selenazole and thiazole possessing much the same properties as the heteroatom of pyridine. Of the two carbon atoms ortho to nitrogen, that is, the 2-carbon and the 4-carbon, only the one in the 2-position is fairly active as a result of its interaction with selenium or sulfur. The 4- and 5-positions of thiazole and selenazole are more susceptible to electrophilic substitution than the 3- and 5-positions of pyridine. This is particularly true of the 5-position of selenazole. Thus it can be said that the 2- and 5-positions of the selenazoles and thiazoles... [Pg.309]

Electrophilic substitution of pyrrole can, however, be carried out under specialised conditions (e.g. acylation with (MeC0)20/BF3, sulphonation with a pyridine/S03 complex, C5H5N-S03, cf. (67)) leading to preferential attack at the 2-, rather than the 3-, position. This reflects the slightly greater stabilisation of the Wheland intermediate for the former (70) compared with that for the latter (71) ... [Pg.167]


See other pages where Pyridines electrophilic substitution is mentioned: [Pg.749]    [Pg.749]    [Pg.193]    [Pg.239]    [Pg.507]    [Pg.163]    [Pg.251]    [Pg.40]    [Pg.12]    [Pg.621]    [Pg.784]    [Pg.787]    [Pg.792]    [Pg.793]    [Pg.797]    [Pg.880]    [Pg.66]    [Pg.78]    [Pg.226]    [Pg.195]    [Pg.366]    [Pg.1313]    [Pg.665]    [Pg.331]    [Pg.899]    [Pg.915]    [Pg.151]   
See also in sourсe #XX -- [ Pg.165 ]

See also in sourсe #XX -- [ Pg.165 ]

See also in sourсe #XX -- [ Pg.409 ]

See also in sourсe #XX -- [ Pg.19 ]

See also in sourсe #XX -- [ Pg.750 , Pg.752 , Pg.807 ]

See also in sourсe #XX -- [ Pg.10 , Pg.75 , Pg.89 , Pg.92 ]

See also in sourсe #XX -- [ Pg.399 ]

See also in sourсe #XX -- [ Pg.77 ]




SEARCH



1.2.4- Triazolo pyridine electrophilic substitution

7-Substituted pyridines

Electrophilic aromatic substitution of pyridines

Electrophilic substitution Of pyridine

Electrophilic substitution in pyridine

Electrophilic substitution pyridine susceptibility

Imidazo pyridines electrophilic substitution

Pyrazolo pyridine electrophilic substitution

Pyridine alkyl, electrophilic substitution

Pyridine carboxylic acids, electrophilic substitution

Pyridine derivatives electrophilic aromatic substitution

Pyridine direct electrophilic substitution

Pyridine electrophilic aromatic substitution

Pyridine electrophilic substitution reactions

Pyridine ethers electrophilic substitution

Pyridine ring electrophilic substitutions

Pyridine, aromaticity electrophilic substitution reactions

Pyridines substitution

Pyrrolo-pyridines electrophilic substitution

Thieno-pyridines electrophilic substitution

© 2024 chempedia.info