Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrazolones, reactions

These latter compounds can also be obtained by direct cyclization in a Hantzsch s reaction of the selenosemicarbazone of a /3-ketoester, that is, a l-selenocarbamoyl-3-alkyl-5-pyrazolone (Scheme 21). [Pg.235]

The tautomeric character of the pyrazolones is also illustrated by the mixture of products isolated after certain reactions. Thus alkylation normally takes place at C, but on occasion it is accompanied by alkylation on O and N. Similar problems can arise during acylation and carbamoylation reactions, which also favor C. Pyrazolones react with aldehydes and ketones at to form a carbon—carbon double bond, eg (41). Coupling takes place when pyrazolones react with diazonium salts to produce azo compounds, eg (42). [Pg.312]

The pyrazolone-3-carboxyhc acid (71) has been isolated by reaction of oxazolone (70) with hydrazonyl chloride (eq. 18) (46). [Pg.315]

The most important synthesis of pyrazolones involves the condensation of a hydrazine with a P-ketoester such as ethyl acetoacetate. Commercially important pyrazolones carry an aryl substituent at the 1-position, mainly because the hydrazine precursors are prepared from readily available and comparatively inexpensive diazonium salts by reduction. In the first step of the synthesis the hydrazine is condensed with the P-ketoester to give a hydrazone heating with sodium carbonate then effects cyclization to the pyrazolone. In practice the condensation and cyclization reactions are usually done in one pot without isolating the hydrazone intermediate. [Pg.296]

Amino and sulfur analogues of pyrazolones also yield the aromatic quaternary salt (231 X = NH or S). If the pyrazole bears a substituent with a second pyridine-like nitrogen atom, an intramolecular bridge can be formed by reaction with a dihalogenoalkane. Thus pyrazol-I -ylpyridines react with 1,2-dibromoethane to form (233) (81JHC9). [Pg.228]

Scheme 19 contains all the reactions observed in different examples, none being so complex (B-76MI40402). Most studies deal with the methylation of 3-methyl-1-phenyl-pyrazolone, since in this case one of the products obtained is antipyrine (2,3-dimethyl-l-phenyl-3-pyrazolin-5-one), one of the classical antipyretic agents (Section 4.04.4.1.1). [Pg.230]

The reaction has been extended to indazole (67BSF2619) from which both isomers have been obtained, and to pyrazolones (68BSF5019). In the latter system N-, O- and C-aryl and even diaryl derivatives have been isolated from the reaction with l-fluoro-2,4-dinitrobenzene. [Pg.232]

As discussed in the theoretical section (4.04.1.2.1), electrophilic attack on pyrazoles takes place at C-4 in accordance with localization energies and tt-electron densities. Attack in other positions is extremely rare. This fact, added to the deactivating effect of the substituent introduced in the 4-position, explains why further electrophilic substitution is generally never observed. Indazole reacts at C-3, and reactions taking place on the fused ring will be discussed in Section 4.04.2.3.2(i). Reaction on the phenyl ring of C- and A-phenyl-pyrazoles will be discussed in Sections 4.04.2.3.3(ii) and 4.04.2.3.10(i), respectively. The behaviour of pyrazolones is quite different owing to the existence of a non-aromatic tautomer. [Pg.237]

The reaction is very common in pyrazolone chemistry. Since alkoxypyrazoles and tautomerizable pyrazolones undergo this reaction and 3-pyrazolin-5-ones, like antipyrine, do not, it is assumed that the reaction takes place at C-4 of the OH tautomer. Pyrazolone diazo coupling is an important industrial reaction since the resulting azo derivatives are used as dyestuffs. For instance, tartrazine (Section 4.04.4.1.3) has been prepared this way. 3,5-Pyrazolidinediones react with aryldiazonium salts resulting in the introduction of a 4-arylazo group. As has been described in Section 4.04.2.1.4(v), diazonium salts couple in the 3-position with indazole to give azo compounds. [Pg.242]

Pyrazolones show a great variety of reactions with carbonyl compounds (B-76MI40402). For instance, antipyrine is 4-hydroxymethylated by formaldehyde and it also undergoes the Mannich reaction. Tautomerizable 2-pyrazolin-5-ones react with aldehydes to yield compound (324) and with acetone to form 4-isopropylidene derivatives or dimers (Scheme 8 Section 4.02.1.4.10). [Pg.242]

Very little is known about nucleophilic attack on an unsubstituted carbon atom of pyrazoles and their aromatic derivatives (pyrazolones, pyrazolium ions). The SwAr reaction of halogenopyrazoles will be discussed in Section 4.04.2.3.7. Sulfur nucleophiles do not attack the ring carbon atoms of pyrazolium salts but instead the substituent carbon linked to nitrogen with concomitant dequaternization (Section 4.04.2.3.lO(ii)). The ring opening of pyrazolium salts by hydroxide ion occurs only if carbon C-3 is unsubstituted the exact mechanism is unknown and perhaps involves an initial attack of OH on C-3. [Pg.243]

Two reactions of the non-aromatic 4,4-disubstituted pyrazolones are worthy of mention. Carpino discovered that 4,4-dihalogenopyrazolones (365) and 4-substituted 4-halogenopyrazolones (366) when treated with bases yield a, 8-alkynic and -alkenic acids, respectively (66JOC2867). The reaction proceeds through an oxopyrazolenine (2,3-diazacyc-lopentadienone (367) (B-74M140408). A modification of the experimental procedure transforms (365) into bimanes (368) (82JOC214), which are formed from (367 R = X),... [Pg.250]

The acetyl transfer reactions of acetylated pyrazolones (acylotropy) have been carefully studied by Arakawa and Miyasaka (74CPB207,74CPB214) (Section 4.04.2.1.3(x)). Methylation of 3-methyl-l-phenyl-4-phenylazo-5-pyrazolone (402) yields, depending on the experimental conditions, the N- and the O-methylated derivatives (483) and (484) (66BSF2990). These derivatives have been used as model compounds in a study of the tautomerism of (402) (structure 139 Section 4.04.1.5.2). [Pg.264]

Pyrazolo[3,4-d][l,2]diazepines synthesis, 7, 597 Pyrazolop, 4- 6][ 1,4]diazepines synthesis, 5, 272 Pyrazolo[l, 4]diazepinones as anticonvulsant, 1, 170 Pyrazolo[2,3-e]diazepinones synthesis, 5, 272 1 H-Pyrazolo[l,5-6]imidazoles synthesis, 6, 992 Pyrazolo[2,3-a]imidazoles biological activity, 6, 1024 Pyrazolo[2,3-c]imidazoles reactions, 6, 1041 synthesis, 6, 1047 Pyrazolo[2,3-imidazoles synthesis, 6, 991 Pyrazolo[3,2- njisoquinolines synthesis, 5, 339 Pyrazolop, 4-c]isoquinolines synthesis, 5, 273 Pyrazolonaphthyri dines synthesis, 5, 339 Pyrazolone, diazophotolysis, 5, 252 Pyrazolone, 4,4-dihalo-rearrangements, 5, 250 Pyrazolone, ethoxy-hydrazinolysis, 5, 253 Pyrazolone, 4-halo-... [Pg.777]

H,3H- Pyrrolo[l, 2-c]oxazole-l, 3-dione, 5,6,7,8-tetrahydro-IR spectra, 6, 978 [2.2](2,5)Pyrrolophane, N-aryl-rearrangements, 4, 209 Pyrrolophanes natural products, 7, 764 synthesis, 7, 771 Pyrrolophanes, N-aryl-synthesis, 7, 774 (2,4)Pyrrolophanes synthesis, 7, 771 Pyrrolo[3,4-c]pyran-4-ones synthesis, 4, 288 Pyrrolopyrans synthesis, 4, 525, 526 Pyrrolopyrazines synthesis, 4, 526 Pyrrolo[l, 2-a]pyrazines synthesis, 4, 516 Pyrrolo[2,3-6]pyrazines Mannich reaction, 4, 504 Vilsmeier reaction, 4, 505 Pyrrolo[3,4-c]pyrazole, 1,3a,6,6a-tetrahydro-structure, 6, 976 synthesis, 6, 1019 Pyrrolopyrazoles synthesis, 5, 164 Pyrrolo[l,2-6]pyrazoles synthesis, 6, 1002, 1006 Pyrrolo[3,4-c]pyrazoles reactions, 6, 1034 synthesis, 6, 989, 1043 Pyrrolo[3,4-c]pyrazolones synthesis, 6, 989 Pyrfolopyridazines synthesis, 4, 517 Pyrrolo[l, 2-6]pyridazines synthesis, 4, 297 6/7-Pyrrolo[2,3-d]pyridazines synthesis, 4, 291 2/f-Pyrrolo[3,4-d]pyridazines synthesis, 4, 291 6/7-Pyrrolo[3,4-d]pyridazines synthesis, 4, 291... [Pg.822]

Preparation of thiadiazoles via the Hurd-Mori cyclization has led to the synthesis of a variety of biologically active and functionally useful compounds. Discussion of reactions prior to 1998 on the preparation of thiadiazoles have been compiled in a review by Stanetty et al Recent syntheses of thiadiazoles as intermediates for useful transformations to other heterocycles have appeared. For example, the thiadiazole intermediate 36 was prepared from the hydrazone 35 and converted to benzofuran upon treatment with base. Similarly, the thiadiazole acid chloride 38 was converted to the hydrazine 39 which, upon base treatment, provided the pyrazolone, which can be sequentially alkylated in situ to provide the product 40. ... [Pg.287]

The reaction is generally performed between 0 and 100 °C with the majority of the reactions being mn at reflux. Polar protic solvents such as methanol, ethanol, isopropanol, and water are commonly used as solvents. Addition of acid or use of acetic acid as solvent generally helps push sluggish reactions. The use of P-ketoesters as the dicarbonyl partner occasionally requires added base for cyclization to occur to form the pyrazolone. When using alkyl hydrazine salts, base may be required to deprotonate the hydrazine for the reaction to take place. [Pg.292]

Knorr reported the first pyrazole derivative in 1883. The reaction of phenyl hydrazine and ethylacetoacetate resulted in a novel stmcture identified in 1887 as l-phenyl-3-methy 1-5-pyrazolone 9. His interest in antipyretic compounds led him to test these derivatives for antipyretic activity which led to the discovery of antipyrine 10. He introduced the name pyrazole for these compounds to denote that the nucleus was derived from the pyrrole by replacement of a carbon with a nitrogen. He subsequnently prepared many pyrazole analogs, particularly compounds derived from the readily available phenyl hydrazine. The unsubstituted pyrazole wasn t prepared until 1889 by decarboxylation of liT-pyrazole-3,4,5-tricarboxylic acid. ... [Pg.292]

Another type of tautomerization was observed in the complexation reaction of 5-oxo tautomers of pyrazolone with metal chlorides 362 (89ZNK 2966). [Pg.288]

As a further typical reaction of the hydrazine group of the 2-hydrazinoselenazoles (cf. Section I,C,2), pyrazolone formation was investigated. By condensation of the hydrazines with -ketoesters in acetic acid, it was possible to synthesize a series of l-(selenazol-2-yl)-3-alkylpyrazol-5-ones (16). ... [Pg.363]

By further reaction of the selenazole-pyrazolones with p-nitro-sodialkylanilines a number of pyrazolone-azomethines (18) was pre-... [Pg.364]

Condensation of ethyl acetoacetate with phenyl hydrazine gives the pyrazolone, 58. Methylation by means of methyl iodide affords the prototype of this series, antipyrine (59). Reaction of that compound with nitrous acid gives the product of substitution at the only available position, the nitroso derivative (60) reduction affords another antiinflammatory agent, aminopyrine (61). Reductive alkylation of 61 with acetone in the presence of hydrogen and platinum gives isopyrine (62). Acylation of 61 with the acid chloride from nicotinic acid affords nifenazone (63). Acylation of 61 with 2-chloropropionyl chloride gives the amide, 64 displacement of the halogen with dimethylamine leads to aminopropylon (65). ... [Pg.234]

However, when 3,5-diphenyl-4//-pyrazol-4-one, a reagent that undergoes Diels- Alder reactions with inverse-electron demand, is used, addition of the 2,4-diene part of oxepin to one of the two C-N double bonds of the pyrazolone is observed to give 4.232... [Pg.52]


See other pages where Pyrazolones, reactions is mentioned: [Pg.46]    [Pg.25]    [Pg.427]    [Pg.427]    [Pg.218]    [Pg.232]    [Pg.252]    [Pg.264]    [Pg.264]    [Pg.587]    [Pg.292]    [Pg.261]    [Pg.83]    [Pg.92]    [Pg.93]    [Pg.104]    [Pg.116]    [Pg.125]    [Pg.130]    [Pg.213]    [Pg.773]    [Pg.353]   
See also in sourсe #XX -- [ Pg.578 ]

See also in sourсe #XX -- [ Pg.578 ]




SEARCH



5-Pyrazolones, 4-arylideneDiels-Alder reactions

Pyrazolon

Pyrazolone

Pyrazolone, benzylideneKnoevenagel reaction

Pyrazolone, benzylideneKnoevenagel reaction stereoselectivity

Pyrazolones Knoevenagel reaction

Pyrazolones, reaction with aldehydes

Pyrazolons

Reaction with pyrazolones

© 2024 chempedia.info