Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protons, rate enhancement

A quantitative correlation between rate and equilibrium constants for the different metal ions is absent. The observed rate enhancements are a result of catalysis by the metal ions and are clearly not a result of protonation of the pyridyl group, since the pH s of all solutions were within the region where the rate constant is independent of the pH (Figure 2.1). [Pg.59]

Solvent for Base-Catalyzed Reactions. The abihty of hydroxide or alkoxide ions to remove protons is enhanced by DMSO instead of water or alcohols (91). The equiUbrium change is also accompanied by a rate increase of 10 or more (92). Thus, reactions in which proton removal is rate-determining are favorably accompHshed in DMSO. These include olefin isomerizations, elimination reactions to produce olefins, racemizations, and H—D exchange reactions. [Pg.112]

Substituted tetrazoles readily exchange the 5-hydrogen for deuterium in aqueous solution. A major rate-enhancing effect is observed with copper(II) or zinc ions due to complexation with the heterocycle. The rate of base-induced proton-deuterium exchange of 1-methyltetrazole is 10 times faster than 2-methyltetrazole (77AHC(2l)323). [Pg.70]

The catalytic triad consists of the side chains of Asp, His, and Ser close to each other. The Ser residue is reactive and forms a covalent bond with the substrate, thereby providing a specific pathway for the reaction. His has a dual role first, it accepts a proton from Ser to facilitate formation of the covalent bond and, second, it stabilizes the negatively charged transition state. The proton is subsequently transferred to the N atom of the leaving group. Mutations of either of these two residues decrease the catalytic rate by a factor of 10 because they abolish the specific reaction pathway. Asp, by stabilizing the positive charge of His, contributes a rate enhancement of 10. ... [Pg.219]

The relative importance of the potential catalytic mechanisms depends on pH, which also determines the concentration of the other participating species such as water, hydronium ion, and hydroxide ion. At low pH, the general acid catalysis mechanism dominates, and comparison with analogous systems in which the intramolecular proton transfer is not available suggests that the intramolecular catalysis results in a 25- to 100-fold rate enhancement At neutral pH, the intramolecular general base catalysis mechanism begins to operate. It is estimated that the catalytic effect for this mechanism is a factor of about 10. Although the nucleophilic catalysis mechanism was not observed in the parent compound, it occurred in certain substituted derivatives. [Pg.492]

The observed proton relaxation rate, l/rlobs, is the sum of a diamagnetic contribution, 1/Tld, and the paramagnetic relaxation rate enhancement, 1/Tlp, this latter being linearly proportional to the concentration of the paramagnetic species, [Gd], In Equation (1), the concentration is usually given in mmol L 1, thus the unity of proton relaxivity, rh is mM 1 s 1. [Pg.843]

The reactivities of carbenes toward alkenes have been correlated with the inductive and resonance effects of the carbene substituents, log k — a Eat + fcEaR+ + c.m Analogous correlations cannot be obtained for the reaction rates of carbenes with alcohols, neither with the substituent parameters used by Moss,109 nor with related sets.110 In particular, the substituent parameters do not describe the strong, rate-enhancing effect of aryl groups. For a detailed analysis, see the discussion of proton affinities (Section V.A). [Pg.32]

Micellar rate enhancements of bimolecular, non-solvolytic reactions are due largely to increased reactant concentrations at the micellar surface, and micelles should favor third- over second-order reactions. The benzidine rearrangement typically proceeds through a two-proton transition state (Shine, 1967 Banthorpe, 1979). The first step is a reversible pre-equilibrium and in the second step proton transfer may be concerted with N—N bond breaking (17) (Bunton and Rubin, 1976 Shine et al., 1982). Electron-donating substituents permit incursion of a one-proton mechanism, probably involving a pre-equilibrium step. [Pg.258]

In the latter bonding situation the overall rate enhancement over that for the noncoordinated ester will depend on the relative stabilities, and acidities, of tetrahedral intermediates, provided these are formed. There have been no detailed mechanistic studies on systems incorporating metals at a distance (23, 24 Scheme 21) but [(NH3)5Co(GlyOEt)]3+ undergoes hydrolysis some 102 times faster than free GlyOEt (44), and the effectiveness of the Co(III) center in this case is similar to that of protonation (see Table III). In other situations Co(III) centers are somewhat less effective than H+, but the sig-... [Pg.351]

Surfactants that form micelles have also been shown to accelerate the formation of nitrosamlnes from amines and nitrite (33.) A rate enhancement of up to 80 0-fold was observed for the nitrosation of dihexylamine by nitrite in the presence of the cationic surfactant decyltrimethylammonium bromide (DTAB) at pH 3.5. A critical micelle concentration (CMC) of 0.08% of DTAB was required to cause this effect, which was attributed to a micelle with the hydrocarbon chains buried in the interior of the micelle. The positively-charged ends of the micelle would then cause an aggregation of free nitrosatable amine relative to protonated amine and thus lead to rate enhancements. Since surfactants are commonly used in water-based fluids (25-50% lubricating agent or 10-2 0% emulsifier in concentrates), concentrations above the CMC of a micelle-forming surfactant could enhance the formation of nitrosamines. [Pg.163]

Since the dissolution rate of passive metals is apparently related to the dissolution rate of the passive film, some of our informations on the effect of solution variables on the dissolution reactivity of such type of oxides appear applicable to the interpretation of some of the factors that enhance or reduce passivity, i) Protons. Obviously, surface protonation will enhance dissolution. For the pas-... [Pg.204]

Molecular hydration in solution is described not only by the inner-sphere water molecules (first and second coordination spheres, see Section II.A.l) but also by solvent water molecules freely diffusing up to a distance of closest approach to the metal ion, d. The latter molecules are responsible for the so-called outer-sphere relaxation (83,84), which must be added to the paramagnetic enhancement of the solvent relaxation rates due to inner-sphere protons to obtain the total relaxation rate enhancement,... [Pg.149]

Diamines of varying structure show rate enhancements of 20-200 fold, compared to monofunctional aliphatic amines, in nucleophilic reactions with N-acetylimidazole (Page and Jencks, 1972). These were attributed to intramolecular general base catalysis of proton removal from the attacking nitrogen, viz.. [Pg.19]

R was varied. Since the mechanism for the methyl ester is certainly A-1 and since intramolecular general acid catalysis should give a different transition state structure and therefore a different p value, it was concluded that the mechanism was A-1 in both cases. The rate enhancement provided by the carboxyl group substituent was ascribed to electrostatic catalysis whereby a proton is stabilized on the acetal oxygen, thus lowering the dissociation constant of the conjugate acid. Complete protonation of methoxymethoxybenzoic acids might be required because of the unstable carbonium ion intermediate. [Pg.92]


See other pages where Protons, rate enhancement is mentioned: [Pg.142]    [Pg.142]    [Pg.154]    [Pg.116]    [Pg.494]    [Pg.308]    [Pg.54]    [Pg.306]    [Pg.335]    [Pg.441]    [Pg.468]    [Pg.409]    [Pg.843]    [Pg.863]    [Pg.31]    [Pg.224]    [Pg.206]    [Pg.186]    [Pg.361]    [Pg.342]    [Pg.134]    [Pg.67]    [Pg.311]    [Pg.139]    [Pg.13]    [Pg.22]    [Pg.140]    [Pg.260]    [Pg.262]    [Pg.275]    [Pg.358]    [Pg.24]    [Pg.27]    [Pg.92]    [Pg.113]   
See also in sourсe #XX -- [ Pg.166 , Pg.167 ]




SEARCH



Proton rates

Rate enhancement

Rates protonation

© 2024 chempedia.info