Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partial-proton-transfer

The concerted nature of proton transfer contributes to its rapid rate. The energy cost of breaking the H—Cl bond is partially offset by the energy released in forming the new bond between the transfened proton and the oxygen of the alcohol. Thus, the activation energy is far- less than it would be for a hypothetical two-step process in which the H—Cl bond breaks first, followed by bond formation between FF and the alcohol. [Pg.155]

Heat of Precipitation. Entropy of Solution and Partial Molal Entropy. The Unitary Part of the Entropy. Equilibrium in Proton Transfers. Equilibrium in Any Process. The Unitary Part of a Free Energy Change. The Conventional Standard Free Energy Change. Proton Transfers Involving a Solvent Molecule. The Conventional Standard Free Energy of Solution. The Disparity of a Solution. The E.M.F. of Galvanic Cells. [Pg.93]

The major problem in method (a) is that in ion-molecule interchange, considerable momentum in the direction of travel of the incident ion is imparted to both final products. Hence, in a perpendicular type apparatus only transfer of low weight particles can be observed at all and only at very low velocities of the incident ions (1, 9, 10, 11, 12, 13, 19, 20, 23, 27). Cross-sections cannot be measured. The value of these investigations is that some ion-molecule reactions—e.g., proton transfer and hydride ion transfer—can be identified. The energetics and the competition between charge exchange and ion-molecule reactions can be discussed, and by using partially deuterated compounds, one can obtain a detailed picture of the reaction. [Pg.20]

The occurrence of proton transfer reactions between Z)3+ ions and CHa, C2H, and NDZ, between methanium ions and NH, C2HG, CzD , and partially deuterated methanes, and between ammonium ions and ND has been demonstrated in irradiated mixtures of D2 and various reactants near 1 atm. pressure. The methanium ion-methane sequence proceeds without thermal activation between —78° and 25°C. The rate constants for the methanium ion-methane and ammonium ion-ammonia proton transfer reactions are 3.3 X 10 11 cc./molecule-sec. and 1.8 X 70 10 cc./molecule-sec., respectively, assuming equal neutralization rate constants for methanium and ammonium ions (7.6 X 10 4 cc./molecule-sec.). The methanium ion-methane and ammonium ion-ammonia sequences exhibit chain character. Ethanium ions do not undergo proton transfer with ethane. Propanium ions appear to dissociate even at total pressures near 1 atm. [Pg.284]

A formalism similar to that used for partially adiabatic proton transfer reactions was applied in the calculation of the transition probability. This model of the diffusion jump is similar to the model of the diffusion of light defects in solids which was first considered in Ref. 62. [Pg.143]

A misconception that we commonly encounter is that a spectrum can be a mixture of the salt and the free base. This is an excuse that is often used by chemists to explain an inconveniently messy looking spectrum Don t be tempted by this idea - proton transfer is fast on the NMR timescale (or at least, it is when you use a polar solvent ) and because of this, if you have a sample of a compound that contains only half a mole-equivalent of an acid, you will observe chemical shifts which reflect partial protonation and not two sets of signals for protonated and free-base forms. It doesn t happen - ever ... [Pg.97]

Whereas pyrrole was reported not to give N/H insertion by ketocarbenoids, such a reaction mode does occur with imidazole Copper-catalyzed decomposition of ethyl diazoacetate at 80 °C in the presence of imidazole gives ethyl imidazol- 1-ylacetate exclusively (93 %) small amounts of a C-alkylated imidazole were obtained additionally under purely thermal conditions 244). N/H insertion also takes place at benzimidazole 245 a). The reaction is thought to begin with formation of an N3-ylide, followed by N1 - C proton transfer leading to the formal N/H insertion product. Diazomalonic raters behave analogously however, they suffer complete or partial dealkoxycarbonylation under the reaction conditions 244) (Scheme 34). N-alkylation of imidazole and benzimidazole by the carbenoids derived from co-diazoacetophenone and 2-(diazoacetyl)naphthalene has also been reported 245 b>. [Pg.183]

The above discussion shows the great variety of basic processes which the photoexcited molecules undergo. It is probably safe to assume that each of these processes has some finite probability in most photochemical reactions and at this point, specific predictions of any nature for real molecules might appear hopeless. Yet quite a few calculations have been reported and virtually all of them claimed at least partial success. For the purpose of our discussion they will be divided into two classes according to the nature of the questions asked. The relatively simple case of certain proton-transfer reactions will be mentioned separately afterwards. [Pg.27]

The reactions of the vinylcarbenes 7 and 15 with methanol clearly involve delocalized intermediates. However, the product distributions deviate from those of free (solvated) allyl cations. Competition of the various reaction paths outlined in Scheme 5 could be invoked to explain the results. On the other hand, the effect of charge delocalization in allylic systems may be partially offset by ion pairing. Proton transfer from alcohols to carbenes will give rise to carbocation-alkoxide ion pairs that is, the counterion will be closer to the carbene-derived carbon than to any other site. Unless the paired ions are rapidly separated by solvent molecules, collapse of the ion pair will mimic a concerted O-H insertion reaction. [Pg.5]

Hydrogen-bonding is essentially a partial proton-transfer reaction. Thus, the ionic-resonance mnemonic (5.29a), which expresses the partial covalency of H-bonding, suggests an immediate relationship to the degree of completion of the actual proton-transfer reaction... [Pg.652]

Thus, by virtue of the continuity of the bond-order-bond-length relationship across the entire proton-transfer region, the interpretation of the H-bonded complexes in terms of partial proton transfer (with associated charge and covalent-bond transfer) can hardly be avoided. (Additional discussion of the properties of transition-state species in relation to the associated reactant and product species will be presented in Section 5.4.)... [Pg.656]

In summary, we may say that the NBO/NRT description of partial proton transfer in the equilibrium H-bonded complex(es) is fully consistent with the observed behavior along the entire proton-transfer coordinate, including the transition state. At the transition state the importance of partial co valency and bond shifts can hardly be doubted. Yet the isomeric H-bonded complexes may approach the TS limit quite closely (within 0.2 kcal mol-1 in the present example) or even merge to form a single barrierless reaction profile (as in FHF- or H502+). Hence, the adiabatic continuity that connects isomeric H-bond complexes to the proton-transfer transition state suggests once more the essential futility of attempting to describe such deeply chemical events in terms of classical electrostatics. [Pg.657]

For reactions in which the decomposition of the zwitterionic intermediate, ZH, is, at least partially, rate-limiting, two major mechanisms are now widely accepted. These are known as the specific base-general acid (SB-GA) and the rate-limiting proton transfer (RLPT) mechanisms and are shown in Scheme lla. [Pg.1218]


See other pages where Partial-proton-transfer is mentioned: [Pg.1256]    [Pg.586]    [Pg.778]    [Pg.1256]    [Pg.586]    [Pg.778]    [Pg.18]    [Pg.155]    [Pg.454]    [Pg.454]    [Pg.477]    [Pg.579]    [Pg.346]    [Pg.395]    [Pg.120]    [Pg.199]    [Pg.168]    [Pg.325]    [Pg.146]    [Pg.703]    [Pg.354]    [Pg.534]    [Pg.173]    [Pg.83]    [Pg.128]    [Pg.238]    [Pg.324]    [Pg.149]    [Pg.43]    [Pg.201]    [Pg.124]    [Pg.125]    [Pg.127]    [Pg.154]    [Pg.159]    [Pg.634]    [Pg.136]    [Pg.140]    [Pg.338]    [Pg.1255]   
See also in sourсe #XX -- [ Pg.395 ]




SEARCH



Partial proton transfer reactions

Proton partial

The partial-proton-transfer concept

© 2024 chempedia.info