Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protic solvents reactions with

AG and AG0 are the free energies of activation of the reaction under consideration and of the standard reaction, respectively. The latter is, of course, a constant, and at constant temperature, the quantity RT is also constant. Therefore, if a series of displacements are carried out on the same substrate in protic solvents but with different nucleophiles, Equation 4.22 says that the free energy of activation depends linearly on the power of the nucleophile. Likewise, if the nucleophile and solvent are kept constant but the substrate is varied, the equation says that the free energy of activation depends linearly on the susceptibility of the substrate to changes in nucleophilicity. [Pg.189]

The zwitterion (6) can react with protic solvents to produce a variety of products. Reaction with water yields a transient hydroperoxy alcohol (10) that can dehydrate to a carboxyUc acid or spHt out H2O2 to form a carbonyl compound (aldehyde or ketone, R2CO). In alcohoHc media, the product is an isolable hydroperoxy ether (11) that can be hydrolyzed or reduced (with (CH O) or (CH2)2S) to a carbonyl compound. Reductive amination of (11) over Raney nickel produces amides and amines (64). Reaction of the zwitterion with a carboxyUc acid to form a hydroperoxy ester (12) is commercially important because it can be oxidized to other acids, RCOOH and R COOH. Reaction of zwitterion with HCN produces a-hydroxy nitriles that can be hydrolyzed to a-hydroxy carboxyUc acids. Carboxylates are obtained with H2O2/OH (65). The zwitterion can be reduced during the course of the reaction by tetracyanoethylene to produce its epoxide (66). [Pg.494]

Most ozonolysis reaction products are postulated to form by the reaction of the 1,3-zwitterion with the extmded carbonyl compound in a 1,3-dipolar cycloaddition reaction to produce stable 1,2,4-trioxanes (ozonides) (17) as shown with itself (dimerization) to form cycHc diperoxides (4) or with protic solvents, such as alcohols, carboxyUc acids, etc, to form a-substituted alkyl hydroperoxides. The latter can form other peroxidic products, depending on reactants, reaction conditions, and solvent. [Pg.117]

Aluminum chloride dissolves readily in chlorinated solvents such as chloroform, methylene chloride, and carbon tetrachloride. In polar aprotic solvents, such as acetonitrile, ethyl ether, anisole, nitromethane, and nitrobenzene, it dissolves forming a complex with the solvent. The catalytic activity of aluminum chloride is moderated by these complexes. Anhydrous aluminum chloride reacts vigorously with most protic solvents, such as water and alcohols. The ability to catalyze alkylation reactions is lost by complexing aluminum chloride with these protic solvents. However, small amounts of these "procatalysts" can promote the formation of catalyticaHy active aluminum chloride complexes. [Pg.147]

Reductive cleavages of carbon-chlorine bonds by active metals and with photochemical activation figure in recent studies aimed at HFCs and HCFCs Sodium amalgam [3J] (equation 25), zinc powder [34] (equation 26), and alumi-mun/tin chloride [35] (equation 26) are all used in conjunction with protic solvents in reactions giving high yields and conversions... [Pg.302]

The van Leusen reaction forms 5-substituted oxazoles through the reaction of p-tolylsulfonylmethyl isocyanide (1, TosMIC) with aldehydes in protic solvents at refluxing temperatures. Thus 5-phenyloxazole (2) is prepared in 91% yield by reacting equimolar quantities of TosMIC and benzaldehyde with potassium carbonate in refluxing methanol for 2 hrs. ... [Pg.254]

The reaction is generally performed between 0 and 100 °C with the majority of the reactions being mn at reflux. Polar protic solvents such as methanol, ethanol, isopropanol, and water are commonly used as solvents. Addition of acid or use of acetic acid as solvent generally helps push sluggish reactions. The use of P-ketoesters as the dicarbonyl partner occasionally requires added base for cyclization to occur to form the pyrazolone. When using alkyl hydrazine salts, base may be required to deprotonate the hydrazine for the reaction to take place. [Pg.292]

In a protic solvent—glycols are often used, with the base being the corresponding sodium glycolate—the reaction proceeds via formation of a carbenium ion 5. The diazo compound 3 can be converted into the diazonium ion 4 through transfer of a proton from the solvent (S-H). Subsequent loss of nitrogen then leads to the carbenium ion 5 ... [Pg.23]

In contrast with protic solvents, which decrease the rates of SN2 reactions by lowering the ground-state energy of the nucleophile, polar aprotic solvents increase the rates of Sn2 reactions by raising the ground-state energy of the nucleophile. Acetonitrile (CH3CN), dimethylformamide ((Chy NCHO,... [Pg.370]

El eliminations begin with the same uni molecular dissociation we saw in the Sfsjl reaction, but the dissociation is followed by loss of H+ from the adjacent carbon rather than by substitution. In fact, the El and SN1 reactions normally occur together whenever an alkyl halide is treated in a protic solvent with a non-basic nucleophile. Thus, the best El substrates are also the best SN1 substrates, and mixtures of substitution and elimination products are usually obtained. For example, when 2-chloro-2-methylpropane is warmed to 65 °C in 80% aqueous ethanol, a 64 36 mixture of 2-methyl-2-propanol (Sjql) and 2-methylpropene (El) results. [Pg.392]

Aldehydes and ketones with an a hydrogen atom undergo a base-catalyzed carbonyl condensation reaction called the aldol reaction. For example, treatment of acetaldehyde with a base such as sodium ethoxide or sodium hydroxide in a protic solvent leads to rapid and reversible formation of 3-hydroxybutanal, known commonly as aldol (aidehyde + alcohol), hence the general name of the reaction. [Pg.878]

Hydroxy-l-alkenyl diisopropylcarbamates 2 (X = OCb), in this respect, occupy a medium position since they are stable in strongly acidic and basic protic solvents. For deblocking vinyl carbamates, the presence of catalytic amounts of mercuric or palladium(II) salts is required. Due to this stability, several reactions of homoallylic alcohols, proceeding with high diastereo-selectivity, e g., epoxidation, are applicable in order to introduce further hetero-substituents. [Pg.227]

It should be born in mind, however, that the activation parameters calculated refer to the sum of several reactions, whose enthalpy and/or entropy changes may have different signs from those of the decrystalUzation proper. Specifically, the contribution to the activation parameters of the interactions that occur in the solvent system should be taken into account. Consider the energetics of association of the solvated ions with the AGU. We may employ the extra-thermodynamic quantities of transfer of single ions from aprotic to protic solvents as a model for the reaction under consideration. This use is appropriate because recent measurements (using solvatochromic indicators) have indicated that the polarity at the surface of cellulose is akin to that of aliphatic alcohols [99]. Single-ion enthalpies of transfer indicate that Li+ is more efficiently solvated by DMAc than by alcohols, hence by cellulose. That is, the equilibrium shown in Eq. 7 is endothermic ... [Pg.123]

Protic solvents such as i-PrOH and t-BuOH favor the diastereoselectivity of the reaction of 3-hydroxy-2-pyrone with acrylates [49b]. Further examples of proton-promoted Diels-Alder reactions are reported in Section 4.8. [Pg.278]

We have investigated the bromo-addition of alkenes and their related compounds with BTMA Br3. Thus, we found that the reaction of alkenes with BTMA Br3 in aprotic solvents such as dichloromethane and chloroform gave 1,2-dibromo adducts in a manner of stereospecific anti-addition, and, in such protic solvents as methanol and acetic acid, gave the corresponding dibromo adducts along with considerable amounts of solvent-incorporated products in regioselective manner (Fig. 18) (ref. 29). [Pg.39]


See other pages where Protic solvents reactions with is mentioned: [Pg.148]    [Pg.236]    [Pg.279]    [Pg.211]    [Pg.396]    [Pg.35]    [Pg.213]    [Pg.504]    [Pg.564]    [Pg.220]    [Pg.343]    [Pg.62]    [Pg.347]    [Pg.319]    [Pg.226]    [Pg.182]    [Pg.77]    [Pg.240]    [Pg.362]    [Pg.187]    [Pg.347]    [Pg.434]    [Pg.164]    [Pg.151]    [Pg.394]    [Pg.452]    [Pg.518]    [Pg.376]    [Pg.351]    [Pg.529]    [Pg.604]    [Pg.104]    [Pg.134]    [Pg.404]    [Pg.450]   
See also in sourсe #XX -- [ Pg.203 ]




SEARCH



Lithium aluminum hydride reaction with protic solvents

Protic

Protic solvents

Protic solvents reactions

Proticity

Reactions with Amines, Imines, Nitroso Oxide, and Protic Solvents

Reactions with Solvent

© 2024 chempedia.info