Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proteins photosynthetic reaction centers

Chang, C. H., El Kabbani, O., Tiede, D., Norris, J., and Schiffer, M., 1991, Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry, 30 5352115360. [Pg.667]

Maximum electron-transfer rate ( max) vs. edge-to-edge distance (d) for proteins. Photosynthetic reaction center rates are shown as circles and ZnP to rates in modified myoglobins and cytochromes c are shown as triangles. Adapted from Reference 80. [Pg.344]

Proteins that have tightly bound cofactors, such as heme proteins, photosynthetic reaction centers and antenna proteins, flavoproteins, and pyridoxal phosphate- and NAD-dependent enzymes, provide a variety of chromophores which have absorption bands in the visible and UV region. The CD bands associated with the chromophoric groups are frequently quite intense, despite the fact that the isolated chromophores are achiral in many cases, and therefore have no CD, or are separated from the nearest chiral center by several bonds about which relatively free rotation can occur, and therefore have only weak CD. The extrinsic or induced CD observed in the visible and near-UV spectra of the proteins can provide useful information about the conformation and/or environment of the bound chromophore, which usually plays a critical role in the function of the protein. [Pg.44]

For the study of electron and proton transfer processes in proteins, photosynthetic reaction centers (RC) are of considerable interest as they provide a system that allows to trigger the reaction sequences in a natural way by light. Especially promising objects are the RC of purple bacteria where for two species the three dimensional structure of the RC is known in great detail. The use of single-site mutations adds a further powerful tool to shine light on the role of single amino acids in photosynthetic electron and proton transport. [Pg.389]

Deisenhofer J, Epp O, Miki K, Huber R and Michei H 1984 X-ray structure anaiysis of a membrane-protein compiex eiectron density map at 3 A resoiution and a modei of the chromophores of the photosynthetic reaction center from Rhode pseudomonas viridis J. Mol. Biol. 180 385-98... [Pg.2994]

Despite considerable efforts very few membrane proteins have yielded crystals that diffract x-rays to high resolution. In fact, only about a dozen such proteins are currently known, among which are porins (which are outer membrane proteins from bacteria), the enzymes cytochrome c oxidase and prostaglandin synthase, and the light-harvesting complexes and photosynthetic reaction centers involved in photosynthesis. In contrast, many other membrane proteins have yielded small crystals that diffract poorly, or not at all, using conventional x-ray sources. However, using the most advanced synchrotron sources (see Chapter 18) it is now possible to determine x-ray structures from protein crystals as small as 20 pm wide which will permit more membrane protein structures to be elucidated. [Pg.224]

The interiors of rhodopseudomonad bacteria are filled with photosynthetic vesicles, which are hollow, membrane-enveloped spheres. The photosynthetic reaction centers are embedded in the membrane of these vesicles. One end of the protein complex faces the Inside of the vesicle, which is known as the periplasmic side the other end faces the cytoplasm of the cell. Around each reaction center there are about 100 small membrane proteins, the antenna pigment protein molecules, which will be described later in this chapter. Each of these contains several bound chlorophyll molecules that catch photons over a wide area and funnel them to the reaction center. By this arrangement the reaction center can utilize about 300 times more photons than those that directly strike the special pair of chlorophyll molecules at the heart of the reaction center. [Pg.235]

Figure 12.12 X-ray diffraction pattern from crystals of a membrane-bound protein, the bacterial photosynthetic reaction center. (Courtesy of H. Michel.)... Figure 12.12 X-ray diffraction pattern from crystals of a membrane-bound protein, the bacterial photosynthetic reaction center. (Courtesy of H. Michel.)...
Figure 12.14 The three-dimensional structure of a photosynthetic reaction center of a purple bacterium was the first high-resolution structure to be obtained from a membrane-bound protein. The molecule contains four subunits L, M, H, and a cytochrome. Subunits L and M bind the photosynthetic pigments, and the cytochrome binds four heme groups. The L (yellow) and the M (red) subunits each have five transmembrane a helices A-E. The H subunit (green) has one such transmembrane helix, AH, and the cytochrome (blue) has none. Approximate membrane boundaries are shown. The photosynthetic pigments and the heme groups appear in black. (Adapted from L. Stryer, Biochemistry, 3rd ed. New York ... Figure 12.14 The three-dimensional structure of a photosynthetic reaction center of a purple bacterium was the first high-resolution structure to be obtained from a membrane-bound protein. The molecule contains four subunits L, M, H, and a cytochrome. Subunits L and M bind the photosynthetic pigments, and the cytochrome binds four heme groups. The L (yellow) and the M (red) subunits each have five transmembrane a helices A-E. The H subunit (green) has one such transmembrane helix, AH, and the cytochrome (blue) has none. Approximate membrane boundaries are shown. The photosynthetic pigments and the heme groups appear in black. (Adapted from L. Stryer, Biochemistry, 3rd ed. New York ...
Rees, D.C., et al. The bacterial photosynthetic reaction center as a model for membrane proteins. Anna. Rev. Biochem. 58 607-633, 1989. [Pg.249]

Deisenhofer, J., et al. Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 A resolution. Nature 318 618-624, 1985. [Pg.249]

Michel, H. Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction center from Rhodopseudomonas viridis.. Mol. Biol. [Pg.249]

The structure of the UQ-cyt c reductase, also known as the cytochrome bc complex, has been determined by Johann Deisenhofer and his colleagues. (Deisenhofer was a co-recipient of the Nobel Prize in Chemistry for his work on the structure of a photosynthetic reaction center [see Chapter 22]). The complex is a dimer, with each monomer consisting of 11 protein subunits and 2165 amino acid residues (monomer mass, 248 kD). The dimeric structure is pear-shaped and consists of a large domain that extends 75 A into the mito-... [Pg.686]

FIGURE 22.17 The R. viridis reaction center is coupled to the cytochrome h/Cl complex through the quinone pool (Q). Quinone molecules are photore-duced at the reaction center Qb site (2 e [2 hv] per Q reduced) and then diffuse to the cytochrome h/ci complex, where they are reoxidized. Note that e flow from cytochrome h/ci back to the reaction center occurs via the periplasmic protein cytochrome co- Note also that 3 to 4 are translocated into the periplasmic space for each Q molecule oxidized at cytochrome h/ci. The resultant proton-motive force drives ATP synthesis by the bacterial FiFo ATP synthase. (Adapted from Deisenhofer, and Michel, H., 1989. The photosynthetic reaction center from the purple bac-terinm Rhod.opseud.omoaas viridis. Science 245 1463.)... [Pg.724]

Studies (see, e.g., (101)) indicate that photosynthesis originated after the development of respiratory electron transfer pathways (99, 143). The photosynthetic reaction center, in this scenario, would have been created in order to enhance the efficiency of the already existing electron transport chains, that is, by adding a light-driven cycle around the cytochrome be complex. The Rieske protein as the key subunit in cytochrome be complexes would in this picture have contributed the first iron-sulfur center involved in photosynthetic mechanisms (since on the basis of the present data, it seems likely to us that the first photosynthetic RC resembled RCII, i.e., was devoid of iron—sulfur clusters). [Pg.355]

It is interesting to compare the thermal-treatment effect on the secondary structure of two proteins, namely, bacteriorhodopsin (BR) and photosynthetic reaction centers from Rhodopseudomonas viridis (RC). The investigation was done for three types of samples for each object-solution, LB film, and self-assembled film. Both proteins are membrane ones and are objects of numerous studies, for they play a key role in photosynthesis, providing a light-induced charge transfer through membranes—electrons in the case of RC and protons in the case of BR. [Pg.153]

Studies of ferredoxin [152] and a photosynthetic reaction center [151] have analyzed further the protein s dielectric response to electron transfer, and the protein s role in reducing the reorganization free energy so as to accelerate electron transfer [152], Different force fields were compared, including a polarizable and a non-polarizable force field [151]. One very recent study considered the effect of point mutations on the redox potential of the protein azurin [56]. Structural relaxation along the simulated reaction pathway was analyzed in detail. Similar to the Cyt c study above, several slow relaxation channels were found, which limited the ability to obtain very precise free energy estimates. Only semiquantitative values were... [Pg.483]

The photosynthetic reaction center (RC) of purple nonsulfur bacteria is the core molecular assembly, located in a membrane of the bacteria, that initiates a series of electron transfer reactions subsequent to energy transfer events. The bacterial photosynthetic RCs have been characterized in more detail, both structurally and functionally, than have other transmembrane protein complexes [1-52]. [Pg.2]

A more complete list of early applications of QM/MM methods to enzymatic reactions can be found elsewhere [18, 35, 83, 84], Gao [85] has reviewed QM/MM studies of a variety of solution phenomena. QM/MM methods have also been used to study the spectra of small molecules in different solvents [86] and electrochemical properties of photosynthetic reaction centers within a protein environment [87-89], An approach has also been developed for calculation of NMR shielding tensors by use of a QM/ MM method [90]. [Pg.172]

While the results of this work are encouraging, it is clear that the structural definition of mutant proteins of this type is critical to development of rational interpretation of the results if for no other reason than that the structural perturbation introduced is presumably greater than for simple point mutations. Moreover, it would be particularly interesting to compare the functional properties of mutants compared in this manner in assays involving protein-protein reactions relevant to the species of cytochrome c on which the mutagenesis is based. For example, comparison of the activities of wild-type yeast cytochrome c with that of a loop-insertion mutant modelled on a photosynthetic cytochrome c in the reaction with the photosynthetic reaction center could help define the structural elements involved in the cytochrome c binding domain for the reaction center. [Pg.149]


See other pages where Proteins photosynthetic reaction centers is mentioned: [Pg.116]    [Pg.349]    [Pg.116]    [Pg.349]    [Pg.210]    [Pg.403]    [Pg.231]    [Pg.235]    [Pg.726]    [Pg.160]    [Pg.83]    [Pg.126]    [Pg.344]    [Pg.147]    [Pg.5]    [Pg.19]    [Pg.51]    [Pg.59]    [Pg.191]    [Pg.425]    [Pg.1]    [Pg.154]    [Pg.224]   


SEARCH



Photosynthetic reaction center

Photosynthetic reactions

Reaction center

© 2024 chempedia.info