Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protein synthesis, blocking

Typical classes and examples within these categories as they apply to what is currently most prescribed on the U.S. market are summarized in Table 1.8. The targets in groups 1 and 4 are unique in bacteria and absent in humans and other animals, whereas groups 2, 3, and 5 have human counterparts that are structurally different between prokaryotes and eukaryotes. These differences in targets make the use of antibiotics selective for bacteria with little or no effect on eukaryotic cells from a therapeutic perspective. However, that does not mean that antimicrobial compounds are completely inert to eukaryotes. The mechanisms that block bacterial protein synthesis, block DNA replication, and those that disrupt membrane integrity affect membrane pores. [Pg.34]

Frey U, Krug M, Reymann KG, Matthies H (1988) Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res 452 57-65... [Pg.553]

Inhibitor of protein synthesis, blocking the peptide bond formation (272,273)... [Pg.393]

Studies of the incorporation of amino acids and into proteins of sea urchin eggs have established that fertilization is immediately followed by increased protein synthesis. In contrast, the unfertilized egg synthesizes little or no protein. The inhibition of protein synthesis blocks cellular proliferation. Detailed study of the machinery involved in protein synthesis has... [Pg.249]

Many human diseases are caused when certain proteins are either over- or underexpressed. Eor example, breast cancer can be induced by overexpressing certain cellular oncogenes within mammary tissue. To study the disease, researchers produce a line of transgenic mice that synthesize an abnormal amount of the same protein. This leads to symptoms of the disease in mice that are similar to what is found in humans. A protein can be overexpressed by inserting a DNA constmct with a strong promotor. Conversely, underexpression of a protein can be achieved by inserting a DNA constmct that makes antisense RNA. This latter blocks protein synthesis because the antisense RNA binds and inactivates the sense mRNA that codes for the protein. Once a line of mice is developed, treatments are studied in mice before these therapies are appHed to humans. [Pg.242]

Those herbicides that block mitotic entry decrease or prevent the formation of mitotic figures in meristems. Amino acid, protein, RNA, DNA, and ATP synthesis and/or utilization can all attest cell growth (163,166). Although not registered as herbicides, cycloheximide [66-81-9] inhibits mitotic entry by inhibiting protein synthesis (167) hydroxyurea/727-(97-/7 inhibits DNA synthesis (168) and actinomycin D [50-76-0] nh2oix.s RNA synthesis (167). [Pg.46]

Mechanism of Action. THie earliest studies on the mechanism of action of lincomycin showed that lincomycin had the immediate effect on Staphjlococcus aureus of complete inhibition of protein synthesis (23). TThis inhibition results from the blocking of the peptidyltransferase site of the SOS subunit of the bacterial ribosome (24). Litde effect on DNA and RNA synthesis was observed. [Pg.87]

The antiviral activity of (5)-DHPA in vivo was assessed in mice inoculated intranasaHy with vesicular stomatitis vims ( 5)-DHPA significantly increased survival from the infection. (5)-DHPA did not significantly reduce DNA, RNA, or protein synthesis and is not a substrate for adenosine deaminase of either bacterial or mammalian origin. However, (5)-DHPA strongly inhibits deamination of adenosine and ara-A by adenosine deaminase. Its mode of action may be inhibition of Vadenosyl-L-homocysteine hydrolase (61). Inhibition of SAH hydrolase results in the accumulation of SAH, which is a product inhibitor of Vadenosylmethionine-dependent methylation reactions. Such methylations are required for the maturation of vital mRNA, and hence inhibitors of SAH hydrolase may be expected to block vims repHcation by interference with viral mRNA methylation. [Pg.308]

The aminoglycosides exert their bactericidal effect by blocking a step in protein synthesis necessary for bacterial multiplication. They disrupt the functional... [Pg.93]

Feedback inhibition of amino acid transporters by amino acids synthesized by the cells might be responsible for the well known fact that blocking protein synthesis by cycloheximide in Saccharomyces cerevisiae inhibits the uptake of most amino acids [56]. Indeed, under these conditions, endogenous amino acids continue to accumulate. This situation, which precludes studying amino acid transport in yeast in the presence of inhibitors of protein synthesis, is very different from that observed in bacteria, where amino acid uptake is commonly measured in the presence of chloramphenicol in order to isolate the uptake process from further metabolism of accumulated substances. In yeast, when nitrogen starvation rather than cycloheximide is used to block protein synthesis, this leads to very high uptake activity. This fact supports the feedback inhibition interpretation of the observed cycloheximide effect. [Pg.233]

Folic acid antagonist inhibits dihydrofolate reductase (DHFR) blocks reduction of folate to tetrahydrofolate inhibits de novo purine synthesis results in arrest of DNA, RNA, and protein synthesis... [Pg.1409]

Mailer I have some speculations. The other thing that goes on in an embryo that is independent of protein synthesis is centrosome replication. We showed last year that if cyclin E/Cdk activity is blocked, so is centrosome replication. One possibility is that the timer is actually monitoring centrosomes, as a sort of autonomous thing that replicates. The two things that are replicated in cells are the genome and centrosomes very little is known about centrosome replication. [Pg.73]

Several institutes throughout the world immediately began to carry out experiments on prebiotic chemistry. At this point, we need to realize that the prebiotic synthesis of protein building blocks is only a first step towards solving the biogenesis problem. Put simply, it is a method for making bricks which will later be used in building a multi-storey office block ... [Pg.88]

Figure 7.5 Model of ferritin (and erythroid a-aminolaevulinate synthase) translation/ribosome binding regulation by IRP. In (a), with IRP not bound to the IRE (1) binding of the 43S preinitiation complex (consisting of the small ribosomal 40S subunit, GTP and Met-tRNAMet) to the mRNA is assisted by initiation factors associated with this complex, as well as additional eukaryotic initiation factors (elFs) that interact with the mRNA to facilitate 43S association. Subsequently (2), the 43S preinitiation complex moves along the 5 -UTR towards the AUG initiator codon, (3) GTP is hydrolysed, initiation factors are released and assembly of the 80S ribosome occurs. Protein synthesis from the open reading frame (ORF) can now proceed. In (b) With IRP bound to the IRE, access of the 43S preinitiation complex to the mRNA is sterically blocked. From Gray and Hentze, 1994, by permission of Oxford University Press. Figure 7.5 Model of ferritin (and erythroid a-aminolaevulinate synthase) translation/ribosome binding regulation by IRP. In (a), with IRP not bound to the IRE (1) binding of the 43S preinitiation complex (consisting of the small ribosomal 40S subunit, GTP and Met-tRNAMet) to the mRNA is assisted by initiation factors associated with this complex, as well as additional eukaryotic initiation factors (elFs) that interact with the mRNA to facilitate 43S association. Subsequently (2), the 43S preinitiation complex moves along the 5 -UTR towards the AUG initiator codon, (3) GTP is hydrolysed, initiation factors are released and assembly of the 80S ribosome occurs. Protein synthesis from the open reading frame (ORF) can now proceed. In (b) With IRP bound to the IRE, access of the 43S preinitiation complex to the mRNA is sterically blocked. From Gray and Hentze, 1994, by permission of Oxford University Press.
Olsen, P. H., and Ambros, V. (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671—680. [Pg.145]

Dominguez, J. M., Gomez-Lorenzo, M. G., and Martin, J. J. (1999). Sordarin inhibits fungal protein synthesis by blocking translocation differently to fusidic arid. j. Biol. Chem. 274, 22423-22427. [Pg.296]

The product inhibits replication of human CMV (HCMV) via an antisense mechanism. Its nucleotide sequence is complementary to a sequence in mRNA transcripts of the major immediate early region (IE2 region) of HCMV. These mRNAs code for several essential viral proteins and blocking their synthesis effectively inhibits viral replication. [Pg.450]


See other pages where Protein synthesis, blocking is mentioned: [Pg.113]    [Pg.360]    [Pg.315]    [Pg.159]    [Pg.440]    [Pg.113]    [Pg.360]    [Pg.315]    [Pg.159]    [Pg.440]    [Pg.45]    [Pg.45]    [Pg.47]    [Pg.259]    [Pg.122]    [Pg.122]    [Pg.246]    [Pg.617]    [Pg.195]    [Pg.228]    [Pg.163]    [Pg.124]    [Pg.365]    [Pg.171]    [Pg.172]    [Pg.111]    [Pg.242]    [Pg.66]    [Pg.225]    [Pg.41]    [Pg.89]    [Pg.137]    [Pg.13]    [Pg.219]    [Pg.824]   
See also in sourсe #XX -- [ Pg.824 ]




SEARCH



Block synthesis

Ribosome blocking protein synthesis

© 2024 chempedia.info