Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protein stability hydrophobic effects

Water-soluble globular proteins usually have an interior composed almost entirely of non polar, hydrophobic amino acids such as phenylalanine, tryptophan, valine and leucine witl polar and charged amino acids such as lysine and arginine located on the surface of thi molecule. This packing of hydrophobic residues is a consequence of the hydrophobic effeci which is the most important factor that contributes to protein stability. The molecula basis for the hydrophobic effect continues to be the subject of some debate but is general considered to be entropic in origin. Moreover, it is the entropy change of the solvent that i... [Pg.531]

Prevost, M. Wodak, S. J. Tidor, B. Karplus, M., Contribution of the hydrophobic effect to protein stability — analysis based on simulations of the Ile-96- Ala mutation in barnase, Proc. Natl Acad. Sci. USA 1991, 88,10880-10884. [Pg.499]

Szleifer I (1997) Protein adsorption on surfaces with grafted polymers a theoretical approach. Biophys J 72 595-612 Tanford C (1973) The hydrophobic effect. John Wiley Sons, Inc., Hoboken Van Dulm P, Norde W, Lyklema J (1981) Ion participation in protein adsorption at solid surfaces. J Colloid Interf Sci 82 77-82 Zoungrana T, Findenegg GH, Norde W (1997) Structure, stability and activity of adsorbed ensymes. J Colloid Interf Sci 190 437-448 Zoungrana T, Norde W (1997) Thermal stability and enzymatic activity of a-chymotrypsin adsorbed on polystyrene surfaces. Colloid Surf B 9 157-167... [Pg.123]

Hydrophobic interactions are the single most important stabilizing influence of protein native structure. The hydrophobic effect refers to the tendency of non-polar substances to minimize contact with a polar solvent such as water. Non-polar amino acid residues constitute a significant proportion of the primary sequence of virtually all polypeptides. These polypeptides will fold in such a way as to maximize the number of such non-polar residue side chains buried in the polypeptide s interior, i.e. away from the surrounding aqueous environment. This situation is most energetically favourable. [Pg.27]

The native conformation of proteins is stabilized by a number of different interactions. Among these, only the disulfide bonds (B) represent covalent bonds. Hydrogen bonds, which can form inside secondary structures, as well as between more distant residues, are involved in all proteins (see p. 6). Many proteins are also stabilized by complex formation with metal ions (see pp. 76, 342, and 378, for example). The hydrophobic effect is particularly important for protein stability. In globular proteins, most hydrophobic amino acid residues are arranged in the interior of the structure in the native conformation, while the polar amino acids are mainly found on the surface (see pp. 28, 76). [Pg.72]

When the urea and thiol are removed by dialysis (see p. 78), secondary and tertiary structures develop again spontaneously. The cysteine residues thus return to a suf ciently close spatial vicinity that disulfide bonds can once again form under the oxidative effect of atmospheric oxygen. The active center also reestablishes itself In comparison with the denatured protein, the native form is astonishingly compact, at 4.5 2.5 nm. In this state, the apolar side chains (yellow) predominate in the interior of the protein, while the polar residues are mainly found on the surface. This distribution is due to the hydrophobic effect (see p. 28), and it makes a vital contribution to the stability of the native conformation (B). [Pg.74]

The van der Waals model of monomeric insulin (1) once again shows the wedge-shaped tertiary structure formed by the two chains together. In the second model (3, bottom), the side chains of polar amino acids are shown in blue, while apolar residues are yellow or pink. This model emphasizes the importance of the hydrophobic effect for protein folding (see p. 74). In insulin as well, most hydrophobic side chains are located on the inside of the molecule, while the hydrophilic residues are located on the surface. Apparently in contradiction to this rule, several apolar side chains (pink) are found on the surface. However, all of these residues are involved in hydrophobic interactions that stabilize the dimeric and hexameric forms of insulin. [Pg.76]

The folding of proteins into their characteristic three-dimensional shape is governed primarily by noncovalent interactions. Hydrogen bonding governs the formation of a helices and [) sheets and bends, while hydrophobic effects tend to drive the association of nonpolar side chains. Hydrophobicity also helps to stabilize the overall compact native structure of a protein over its extended conformation in the denatured state, because of the release of water from the chain s hydration sheath as the protein... [Pg.27]

Enzymes are a class of macromolecules with the ability both to bind small molecules and to effect reaction. Stabilizing forces such as hydrophobic effects only slightly dominate destabilizing forces such as Coulombic forces of equal polarity thus the Gibbs free enthalpy of formation of proteins, AGformation, is only weakly negative. [Pg.19]

Lu, S. M., and Hodges, R. S. (2004). Defining the minimum size of a hydrophobic cluster in two-stranded alpha-helical coiled-coils Effects on protein stability. Prot. Sci. 13, 714-726. [Pg.155]

Hydrophobic forces The hydrophobic effect is the name given to those forces that cause nonpolar molecules to minimize their contact with water. This is clearly seen with amphipathic molecules such as lipids and detergents which form micelles in aqueous solution (see Topic El). Proteins, too, find a conformation in which their nonpolar side chains are largely out of contact with the aqueous solvent, and thus hydrophobic forces are an important determinant of protein structure, folding and stability. In proteins, the effects of hydrophobic forces are often termed hydrophobic bonding, to indicate the specific nature of protein folding under the influence of the hydrophobic effect. [Pg.34]

This interaction pattern is also reflected in the amino acid sequences of proteins such as tropomyosin, which can be shown to be composed of a basic seven-residue sequence that is repeated 40 times without interruption (Hodges et al., 1972 McLachlan and Stewart, 1975). Hydrophobic residues almost invariably occupy the second and fifth positions of the heptad and are presumably directed toward the major axis of the superhelix, where they serve to stabilize the structure by hydrophobic effects (Fig. 15). The charged side chains are also nonrandomly distributed and are believed to form interhelical ion pairs that further stabilize the structure (Talbot and Hodges, 1982). [Pg.103]

We review the subject of noncovalent interactions in proteins with particular emphasis on the so-called weakly polar interactions. First, the physical bases of the noncovalent electrostatic interactions that stabilize protein structure are discussed. Second, the four types of weakly polar interactions that have been shown to occur in proteins are described with reference to some biologically significant examples of protein structure stabilization and protein-ligand binding. Third, hydrophobic effects in proteins are discussed. Fourth, an hypothesis regarding the biological importance of the weakly polar interaction is advanced. Finally, we propose adoption of a systematic classification of electrostatic interactions in proteins. [Pg.126]


See other pages where Protein stability hydrophobic effects is mentioned: [Pg.505]    [Pg.995]    [Pg.205]    [Pg.201]    [Pg.201]    [Pg.206]    [Pg.372]    [Pg.383]    [Pg.358]    [Pg.160]    [Pg.200]    [Pg.130]    [Pg.200]    [Pg.329]    [Pg.124]    [Pg.79]    [Pg.74]    [Pg.117]    [Pg.550]    [Pg.445]    [Pg.145]    [Pg.584]    [Pg.205]    [Pg.74]    [Pg.79]    [Pg.20]    [Pg.331]    [Pg.15]    [Pg.322]    [Pg.338]    [Pg.340]    [Pg.346]    [Pg.346]    [Pg.126]    [Pg.151]    [Pg.181]    [Pg.184]   
See also in sourсe #XX -- [ Pg.223 ]




SEARCH



Hydrophobic effect

Hydrophobic protein stability

Hydrophobic proteins

Hydrophobic stability

Protein stabilization

Proteins stabilizers

Stability , effects

Stabilization effects

Stabilized effects

Stabilizing effect

© 2024 chempedia.info