Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Signal transduction protein phosphorylation

GM-CSF and IL-3 have been shown to compete for receptors in some types of cells (e.g. eosinophils and KG-1 cells), indicating some structural homology between GM-CSF and IL-3 receptors, perhaps because they share certain subunits or adapter proteins. GM-CSF occupancy results in phosphorylation of certain proteins, and because the receptor possesses no inherent kinase activity, receptor occupancy must be linked to kinase activity via the generation of second messenger molecules. Pretreatment of cells with pertussis toxin abolishes the effects of GM-CSF, indicating the involvement of G-proteins in signal transduction. Priming of neutrophil functions with GM-CSF involves the activation of phospholipases A2 and D. [Pg.47]

Figure 21.14. Regulatory Cascade for Glycogen Breakdown. Glycogen degradation is stimulated by hormone binding to 7TM receptors. Hormone binding initiates a G-protein-dependent signal-transduction pathway that results in the phosphorylation and activation of glycogen phosphorylase. Figure 21.14. Regulatory Cascade for Glycogen Breakdown. Glycogen degradation is stimulated by hormone binding to 7TM receptors. Hormone binding initiates a G-protein-dependent signal-transduction pathway that results in the phosphorylation and activation of glycogen phosphorylase.
See also Substrate Level Phosphorylation, Nucleotide Salvage Synthesis, De Novo Biosynthesis of Purine Nucleotides, Nucleotides, Guanine, G Proteins and Signal Transduction... [Pg.71]

Noncatalytic phosphotyrosine binding (PTB) domains are 100-150 residue modules, which bind Asn-Pro-X-Tyr motifs. PTB-domain binding specificity is determined by residues at the amino-terminal side of the phosphotyrosine. In most cases, the tyrosine residue must be phosphorylated in order to mediate binding. PTB domain containing proteins are often found in signal transduction pathways. [Pg.976]

The RTK activity phosphorylates tyrosine residues within the intracellular domain of the receptor. These phosphorylated residues function as docking sites for proteins that will convey the signal to downstream signal transduction components. PKI can be developed that bind these phosphorylated docking sites in order to abrogate inappropriate downstream signalling. [Pg.1010]

Histidine phosphatases and aspartate phosphatases are well established in lower organisms, mainly in bacteria and in context with two-component-systems . Reversible phosphorylation of histidine residues in vertebrates is in its infancy. The first protein histidine phosphatase (PHP) from mammalian origin was identified just recently. The soluble 14 kD protein does not resemble any of the other phosphatases. ATP-citrate lyase and the (3-subunit of heterotrimeric GTP-binding proteins are substrates of PHP thus touching both, metabolic pathways and signal transduction [4]. [Pg.1014]

Smad anchor for receptor activation) An intracellular protein Sara which accumulates at early endosomes and plays a key role in TGF- 3 signal transduction through the recruitment of receptor activated R-Smads for phosphorylation by the type ITGF-B receptor. [Pg.1107]

In contrast to tyrosine kinases, Tyrosine phosphatases (PTPs) are enzymes which act on phosphorylated proteins and catalyze the transfer of a phosphate group from a tyrosine residue to a water molecule, generating orthophosphates in a process which is referred to as dephosphorylation. PTPs are involved in many cellular signal transduction pathways. [Pg.1262]

The VACM-1 receptor is a membrane-associated protein with a single putative transmembrane domain that binds selectively AVP (XD — 2 nM), but cannot discriminate between VXR and V2R analogues. It is expressed in endothelial and medullary collecting duct cells and upon stimulation by AVP. It induces a mobilization of cytosolic-free Ca2+, decreases cAMP production and inhibits cellular growth via MAPK phosphorylation and p53 expression. The mechanism of action and physiological functions of this new receptor are not well understood, but it seems to participate in the regulation of AVP induced signal transduction pathways or of a yet unidentified peptide. [Pg.1276]

Figure 1. Simplified schematic of receptor-mediated signal transduction in neutrophils. Binding of ligand to the receptor activates a guanine-nucleotide-binding protein (G protein), which then stimulates phospholipase C. Phosphatidylinositol 4,5-bis-phosphate is cleaved to produce diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG stimulates protein kinase C. IP3 causes the release of Ca from intracellular stores, which results in an increase in the cytosolic Ca concentration. This increase in Ca may stimulate protein kinase C, calmodulin-dependent protein kinases, and phospholipase A2. Protein phosphorylation events are thought to be important in stimulating degranulation and oxidant production. In addition, ionic fluxes occur across the plasma membrane. It is possible that phospholipase A2 and ionic channels may be governed by G protein interactions. ... Figure 1. Simplified schematic of receptor-mediated signal transduction in neutrophils. Binding of ligand to the receptor activates a guanine-nucleotide-binding protein (G protein), which then stimulates phospholipase C. Phosphatidylinositol 4,5-bis-phosphate is cleaved to produce diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG stimulates protein kinase C. IP3 causes the release of Ca from intracellular stores, which results in an increase in the cytosolic Ca concentration. This increase in Ca may stimulate protein kinase C, calmodulin-dependent protein kinases, and phospholipase A2. Protein phosphorylation events are thought to be important in stimulating degranulation and oxidant production. In addition, ionic fluxes occur across the plasma membrane. It is possible that phospholipase A2 and ionic channels may be governed by G protein interactions. ...
The phosphorylation and dephosphorylation of seryl, threonyl, and tyrosyl residues regulate the activity of certain enzymes of lipid and carbohydrate metabolism and the properties of proteins that participate in signal transduction cascades. [Pg.264]

One main line of future research could be in the inhibitory/activating effect on key enzymes involved in the pathogenesis of arteriosclerosis. In particular, enzymes regulating signal transduction involved in phosphorylation of proteins, such as PKC and tyrosine protein kinase, seems to be somehow modulated by different polyphenols and may represent a possible target for polyphenol activity. [Pg.13]

XU K and thornalley p j (2001) Signal transduction activated by the cancer chemopreventive isothiocyanates cleavage of BID protein, tyrosine phosphorylation and activation of INK , Br J Cancer, 84 670-73. [Pg.63]


See other pages where Signal transduction protein phosphorylation is mentioned: [Pg.275]    [Pg.275]    [Pg.111]    [Pg.75]    [Pg.3108]    [Pg.39]    [Pg.610]    [Pg.331]    [Pg.177]    [Pg.108]    [Pg.62]    [Pg.612]    [Pg.205]    [Pg.209]    [Pg.488]    [Pg.343]    [Pg.566]    [Pg.635]    [Pg.642]    [Pg.707]    [Pg.844]    [Pg.845]    [Pg.1002]    [Pg.1008]    [Pg.1023]    [Pg.1031]    [Pg.1140]    [Pg.1187]    [Pg.1204]    [Pg.1204]    [Pg.1308]    [Pg.64]    [Pg.95]    [Pg.174]    [Pg.211]    [Pg.18]    [Pg.467]    [Pg.467]   
See also in sourсe #XX -- [ Pg.7 ]




SEARCH



Phosphorylated protein

Protein signals

Protein transduction

Signal phosphorylation

Signal transduction

Signaling protein

Signaling transduction

© 2024 chempedia.info