Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protective groups reductive

The dibromoalkene S-40 can be prepared from S-ethyl lactate by introduction of the MEM (methoxyethoxymethyl) protecting group, reduction to the O-protected lactaldehyde and Corey-Fuchs carbonyl olefination (Scheme 19). The l -enantiomer of 40 is available analogously from f -isobutyl lactate and serves as the reagent in the enantiomeric series. The lithium carbenoid S-41 is generated from S-40 by treatment with n-butyllithium in diethyl ether and reacted with aliphatic and aromatic aldehydes in tetrahydrofuran. High diastereoselectivities are reached, as shown in Scheme 19 . ... [Pg.878]

Another application of alkoxylation of nitro-olefins is in the synthesis of positional isomers of muramic acid.156 Addition of isopropyl L-lactate or isopropyl D-lactate to 141 led to the side-chain epimers 199 and 200, respectively, in yields of over 80%. When isopropyl dl-lactate was used, 199 and 200 were obtained as a mixture in which, interestingly, the former preponderated. Removal of protecting groups, reduction, and derivation furnished various derivatives of 3-amino-2-0-[D(and L)-l-carboxyethyl]-3-deoxy-D-glucose (201). [Pg.132]

In a later synthesis of the regioisomers of ropinirole, the isatin was formed from cyclization of a hydrazone under strong acidic conditions. After removal of the ketone functionality via hydrogenolysis and removal of the protective group, reductive amination afforded the regioisomer of ropinirole. [Pg.91]

Trichloro- and 2,2,2-tribromoethoxycarbonyl (Tceoc and Tbeoc) protecting groups are introduced with the commercially available 2,2,2-trihaloethyl chloroformates. These derivatives are stable towards CrOj and acids, but can smoothly be cleaved by reduction with zinc in acetic acid at 20 °C to yield 1,1-dihaloethene and CO. Several examples in lipid (F.R. Pfeiffer, 1968, 1970) and nucleotide syntheses (A.F. Cook, 1968) have been described. [Pg.158]

Since (A) does not contain any other functional group in addition to the formyl group, one may predict that suitable reaction conditions could be found for all conversions into (A). Many other alternative target molecules can, of course, be formulated. The reduction of (H), for example, may require introduction of a protecting group, e.g. acetal formation. The industrial synthesis of (A) is based upon the oxidation of (E) since 3-methylbutanol (isoamyl alcohol) is a cheap distillation product from alcoholic fermentation ( fusel oils ). The second step of our simple antithetic analysis — systematic disconnection — will now be exemplified with all target molecules of the scheme above. For the sake of brevity we shall omit the syn-thons and indicate only the reagents and reaction conditions. [Pg.198]

Tandem cyclization/3-substitution can be achieved starting with o-(trifluoro-acetamido)phenylacetylenes. Cyclization and coupling with cycloalkenyl trif-lates can be done with Pd(PPh3)4 as the catalyst[9]. The Pd presumably cycles between the (0) and (II) oxidation levels by oxidative addition with the triflate and the reductive elimination which completes the 3-alkenylation. The N-protecting group is removed by solvolysis under the reaction conditions, 3-Aryl groups can also be introduced using aryl iodides[9]. [Pg.23]

The cleavage proceeds by initial reduction of the nitro groups followed by acid-catalyzed cleavage. The DNB group can be cleaved in the presence of allyl, benzyl, tetrahydropyranyl, methoxy ethoxy methyl, methoxymethyl, silyl, trityl, and ketal protective groups. [Pg.59]

For a particular phenol, the authors required a protective group that would be stable to reduction (by complex metals, catalytic hydrogenation, and Birch conditions) and that could be easily and selectively removed. [Pg.153]

Electrolytic reduction, 0.25 M H2SO4, 88% yield. 5-4-Picolylcysteine is stable to CF3COOH (7 days), to HBr/AcOH, and to 1 M NaOH. References for the electrolytic removal of seven other protective groups are included. ... [Pg.283]

Many carbamates have been used as protective groups. They are arranged in this chapter in order of increasing complexity of stmcture. The most useful compounds do not necessarily have the simplest stmctures, but are /-butyl (BOC), readily cleaved by acidic hydrolysis benzyl (Cbz or Z), cleaved by catalytic hy-drogenolysis 2,4-dichlorobenzyl, stable to the acid-catalyzed hydrolysis of benzyl and /-butyl carbamates 2-(biphenylyl)isopropyl, cleaved more easily than /-butyl carbamate by dilute acetic acid 9-fluorenylmethyl, cleaved by /3-elimination with base isonicotinyl, cleaved by reduction with zinc in acetic acid 1-adamantyl, readily cleaved by trifluoroacetic acid and ally], readily cleaved by Pd-catalyzed isomerisation. [Pg.316]

A series of amides has been prepared as protective groups that are cleaved by intramolecular cyclization after activation, by reduction of a nitro group, or by activation by other chemical means. These groups have not found much use since the first edition of this volume and are therefore only listed for completeness. The concept is generalized in the following scheme ... [Pg.356]

A -Nitroso derivatives, prepared from secondary amines and nitrous acid, are cleaved by reduction (H2/Raney Ni, EtOH, 28°, 3.5 h CuCl/concd. HCl"). Since many V-nitroso compounds are carcinogens, and because some racemization and cyclodehydration of V-nitroso derivatives of V-alkyl amino acids occur during peptide syntheses, V-nitroso derivatives are of limited value as protective groups. [Pg.374]

Sulfonamides (R2NSO2R ) are prepared from an amine and sulfonyl chloride in the presence of pyridine or aqueous base. The sulfonamide is one of the most stable nitrogen protective groups. Arylsulfonamides are stable to alkaline hydrolysis, and to catalytic reduction they are cleaved by Na/NH3, Na/butanol, sodium naphthalenide, or sodium anthracenide, and by refluxing in acid (48% HBr/cat. phenol). Sulfonamides of less basic amines such as pyrroles and indoles are much easier to cleave than are those of the more basic alkyl amines. In fact, sulfonamides of the less basic amines (pyrroles, indoles, and imidazoles) can be cleaved by basic hydrolysis, which is almost impossible for the alkyl amines. Because of the inherent differences between the aromatic — NH group and simple aliphatic amines, the protection of these compounds (pyrroles, indoles, and imidazoles) will be described in a separate section. One appealing proj>erty of sulfonamides is that the derivatives are more crystalline than amides or carbamates. [Pg.379]

Certain functional groups may be protected from reduction by conversion to anions that resist reduction. Such anions include the alkoxides of allylic and benzylic alcohols, phenoxide ions, mercaptide ions, acetylide ions, ketone carbanions, and carboxylate ions. Except for the carboxylate, phenoxide, and mercaptide ions, these anions are sufficiently basic to be proton-ated by an alcohol, so they are useful for protective purposes only in the... [Pg.3]

Androst-4-ene-3,l 1,17-trionehas been converted into several 3,17-dienamine derivatives which, on reduction with LiAlH4 followed by removal of the protecting groups, give 11 jS-hydroxyandrost-4-ene-3,17-dione. An unsaturated 3-ketone has also been protected as an enamine in the LiAlH4 reduction of a 21-ester group a further example is the conversion of 7-methylene-5a-an-drostane-3,17-dione into the 3-pyrrolidine enamine followed by reduction of the 17-ketone by Li[OC(CH3)3]3 AlH. ... [Pg.88]

A. Reductions with Sodium Borohydride Without Protecting Groups... [Pg.92]

However, treatment of cortisone 3,20-bissemicarbazone with acetic anhydride and pyridine removes the 20-semicarbazone group preferentially. Selective removal of a protecting group can be also achieved by a selective reaction to give a new intermediate which can be converted into the desired product ketone. Thus progesterone 20-monoenol acetate (42) is prepared from the 3,20-bisenol acetate (40) via selective electrophilic attack of iodine at C-6 followed by reductive dehalogenation of (41). ... [Pg.383]

Reduction with sodium borohydride with protecting groups, 94... [Pg.497]

Reduction with sodium borohydride without protecting groups, 92 Reductive deacetoxylation of ll-keto-12/3-hydroxytigogenin diacetate, 53 Reductive methylation of the 3-ethylene ketal of pregna-5, 16-diene-3, 20-dione, 54... [Pg.497]


See other pages where Protective groups reductive is mentioned: [Pg.589]    [Pg.336]    [Pg.19]    [Pg.339]    [Pg.414]    [Pg.326]    [Pg.589]    [Pg.336]    [Pg.19]    [Pg.339]    [Pg.414]    [Pg.326]    [Pg.156]    [Pg.210]    [Pg.163]    [Pg.433]    [Pg.31]    [Pg.144]    [Pg.3]    [Pg.177]    [Pg.279]    [Pg.163]    [Pg.61]    [Pg.85]    [Pg.86]    [Pg.86]    [Pg.87]    [Pg.87]    [Pg.88]    [Pg.223]    [Pg.385]    [Pg.387]   
See also in sourсe #XX -- [ Pg.24 , Pg.27 ]




SEARCH



Carboxyl groups, protection reduction

Protecting Groups Cleaved by Dissolving Metal Reduction

Protecting Groups Cleaved by Reductive Elimination

Protecting groups reduction-labile

Protective groups reductive, total

Reduction group

Reductions with sodium borohydride without protecting groups

Reductive group

© 2024 chempedia.info