Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Propene oxide epoxidation

The one general exception to the rule that ethers don t typically undergo Sn2 reactions occurs with epoxides, the three-membered cyclic ethers that we saw in Section 7.8. Epoxides, because of the angle strain in the three-membered ring, are much more reactive than other ethers. They react with aqueous acid to give 1,2-diols, as we saw in Section 7.8, and they react readily with many other nucleophiles as well. Propene oxide, for instance, reacts with HC1 to give l-chloro-2-propanol by Snj2 backside attack on the less hindered primary carbon atom. We ll look at the process in more detail in Section 18.6. [Pg.370]

Posner recently reported a very simple and fast way to activate epoxides towards nucleophilic opening by ketone lithium enolate anions by use of BF3 Et20 (1 equiv.) [73]. The application of this procedure to the nucleophilic opening of propene oxide with the lithium enolate of 2-cycloheptanone, obtained by the conjugate addition of trimethylstannyllithium to 2-cycloheptenone, afforded the stan-... [Pg.298]

Xanthobacter sp. strain Py2 may be grown with propene or propene oxide. On the basis of amino acid sequences, the monooxygenase that produces the epoxide was related to those that catalyzes the monooxygenation of benzene and toluene (Zhou et al. 1999). The metabolism of the epoxide is initiated by nucleophilic reaction with coenzyme M followed by dehydrogenation (Eigure 7.13a). There are alternative reactions, both of which are dependent on a pyridine nucleotide-disulfide oxidoreductase (Swaving et al. 1996 Nocek et al. 2002) ... [Pg.306]

In an attempt to quantify the relationship between the TiOOH groups and the yield of propene oxide from the extinction coefficients of the latter s 1409-and 1493-cm-1 bands, it was determined that 0.6 mol of the epoxide formed per mole of framework Ti center in the molecular sieve. That is, at least 60% of all framework Ti (80% of the surface-exposed Ti) is converted to TiOOH upon reaction with H202. The consumption of the TiOOH species during the oxygen insertion into propene was also independently confirmed by the loss in intensity of its LMCT band at 360 nm when the catalyst was brought in contact with propene at room temperature (Fig. 50). [Pg.153]

Synonyms 1,2-Epoxypropane propene oxide methyloxirane propylene epoxide... [Pg.609]

In a subsequent paper, the authors developed another type of silica-supported dendritic chiral catalyst that was anticipated to suppress the background racemic reaction caused by the surface silanol groups, and to diminish the multiple interactions between chiral groups at the periphery of the dendrimer 91). The silica-supported chiral dendrimers were synthesized in four steps (1) grafting of an epoxide linker on a silica support, (2) immobilization of the nth generation PAMAM dendrimer, (3) introduction of a long alkyl spacer, and (4) introduction of chiral auxiliaries at the periphery of the dendrimer with (IR, 2R)-( + )-l-phenyl-propene oxide. Two families of dendritic chiral catalysts with different spacer lengths were prepared (nG-104 and nG-105). [Pg.144]

The oxidation of propene to propene oxide, a strategic compound in the manufacture of polyurethane and polyols, displays very low selectivity with many catalysts, unlike the epoxidation of ethane, whose selectivity may be as high as 90% when a supported Ag catalyst is used [235]. Lambert et al. recently showed that selectivities of about 50% can be achieved at 0.25% conversion by supported catalysts, although selectivity declines when the conversion increases [236]. [Pg.479]

The formation of propene oxide as a side product of the acrolein formation or dimerization reactions is reported by many authors. Daniel et al. [95,96] demonstrated that propene oxide is formed by surface-initiated homogeneous reactions which may involve peroxy radical intermediates. The epoxidation is increased by a large void fraction in the catalyst bed or a large postcatalytic volume. In view of these results, the findings of Centola et al. [84] are understandable, as the wall of the empty reactor may have been sufficiently active to initiate the reaction. [Pg.136]

There are several alternatives to the polluting chlorohydrin route. One is the styrene monomer propene oxide (SMPO) process, used by Shell and Lyondell (Figure 1.6a) [14]. It is less polluting, but couples the epoxide production to that of styrene, a huge-volume product. Thus, this route depends heavily on the styrene market price. Another alternative, the ARCO/Oxirane process, uses a molybdenum... [Pg.8]

Propene oxide and C4 epoxides are the key building blocks of the polymer industry. They are produced worldwide by alkene epoxidation. The problem is that the alkenes react with 02 to give several side products, so good selectivities are attained only at low conversions (<5%). Figure 5.27 shows an alternative pathway which... [Pg.221]

Alcoholysis of ester and epoxide with various basic catalysts including alkaline earth metal oxides and hydroxides was reported recently by Hattori et alF61 Various alcohols were transesterified with ethyl acetate at 273 K. The results show that in the presence of strongly basic catalysts such as CaO, SrO and BaO, propan-2-ol reacted much faster than methanol, whereas in the presence of more weakly basic catalysts such as MgO, Sr(0H)2-8H20 and Ba(0H)28H20, methanol reacted faster than propan-2-ol. When the alcoholysis was performed with propene oxide, alkaline earth metal oxides were found to be more reactive than hydroxides the reactivity of the alcohols was in the order methanol > ethanol > propan-2-ol > 2-methylpropan-2-ol, regardless of the type of catalyst. [Pg.181]

The epoxidation of propene with tert-butylhydroperoxide (TBHP) or ethylbenzene hydroperoxide (EBHP), for example, accounts for more than one million tons of propene oxide production on an annual basis (Fig. 4.19). [Pg.147]


See other pages where Propene oxide epoxidation is mentioned: [Pg.169]    [Pg.83]    [Pg.105]    [Pg.128]    [Pg.152]    [Pg.163]    [Pg.67]    [Pg.217]    [Pg.315]    [Pg.272]    [Pg.269]    [Pg.428]    [Pg.428]    [Pg.286]    [Pg.136]    [Pg.157]    [Pg.580]    [Pg.580]    [Pg.256]    [Pg.260]    [Pg.290]    [Pg.308]    [Pg.182]    [Pg.58]    [Pg.55]    [Pg.211]    [Pg.220]    [Pg.44]    [Pg.97]    [Pg.83]    [Pg.105]    [Pg.128]    [Pg.152]    [Pg.163]   
See also in sourсe #XX -- [ Pg.457 ]




SEARCH



Epoxidation oxidant

Epoxidation propene

Epoxide oxidation

Epoxides oxidation

Oxidation propene

Propene epoxide

Propene oxide

© 2024 chempedia.info