Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Propene basicity

Because of its significance, some basic principles of the Ni-catalyzed dimerization of propene in chloroaluminate ionic liquids should be presented here. Table 5.2-2 displays some reported examples, selected to explain the most important aspects of oligomerization chemistry in chloroaluminate ionic liquids [97]. [Pg.245]

At higher temperatures, propene and NH, react over basic catalysts to afford a mixture of nitriles (Eq. 4.2) [42]. [Pg.94]

The reasons for the peculiar reactivity of isobutene among the lower aliphatic olefins can be summarised thus ethylene is insufficiently basic ethylene, propene and the w-butenes offer reaction paths which can compete effectively with propagation and most of the more heavily substituted ethylenes are sterically inhibited. (See also Appendix to Chapter 5.)... [Pg.49]

A very elegant solution to solve this problem is the introduction of either a permanent or a temporary phase boundary between the molecular catalyst and the product phase. The basic principle of multiphase catalysis has already found implementation on an industrial scale in the Shell higher olefin process (SHOP) and the Ruhrchemie/Rhdne-Poulenc propene hydroformylation process. Over the years, the idea of phase-separable catalysis has inspired many chemists to design new families of ligands and to develop new separation... [Pg.216]

Ammonia TPD is very simple and versatile. The use of propylamine as a probe molecule is starting to gain some popularity since it decomposes at the acid site to form ammonia and propene directly. This eliminates issues with surface adsorption observed with ammonia. The conversion of the TPD data into acid strength distribution can be influenced by the heating rate and can be subjective based on the selection of desorption temperatures for categorizing acid strength. Since basic molecules can adsorb on both Bronsted and Lewis acid sites, the TPD data may not necessarily be relevant for the specific catalytic reaction of interest because of the inability to distinguish between Bronsted and Lewis acid sites. [Pg.158]

Until there is a sufficient excess of ethene over [PdH(TPPTS)3] their fast reaction ensures that aU palladium is found in form of tratts-[Pd C(CO)Et (TPPTS)2]. However, at low olefin concentrations (e.g. in biphasic systems with less water-soluble olefins) [PdH(TPPTS)3] can accumulate and through its equihbrium with [Pd(TPPTS)3] (eq. 5.5) can be reduced to metallic palladium. This is why the hydroxycarbonylation of olefins proceeds optimally in the presence of Brpnsted acid cocatalyts with a weekly coordinating anion. Under optimised conditions hydrocarboxylation of propene was catalyzed by PdC + TPPTS with a TOE = 2507 h and l = 57/43 (120 °C, 50 bar CO, [P]/[Pd] = 4, P-CH3C6H4SO3H) [38], In neutral or basic solutions, or in the presence of strongly coordinatmg anions the initial hydride complex cannot be formed, furthermore, the fourth coordination site in the alkyl- and acylpaUadium intermediates may be strongly occupied, therefore no catalysis takes place. [Pg.156]

Acrolein (CHj=CHCHO, also known as 2-propenal) is a a,P-unsaturated aldehyde that can be transformed reducfively to saturated or unsaturated alcohols by reduction of the C = 0 or C = C double bonds (Claus 1998). In addition, a,P-unsaturated aldehydes may undergo hydration reactions in aqueous solutions. It was observed that, under acidic (pH12) conditions, acrolein is hydrated to 3-hydroxypropanal (Jensen and Hashtroudi 1976). In a natural subsurface environment, where pH may range from 6.5 to 8.5, the hydration rate of acrolein increases with the pH and its half-life decreases. Based on an experiment to analyze effects of iron on acrolein transformation, Oh et al. (2006) note that, under acidic conditions (e.g., pH = 4.4), acrolein disappears rapidly from solution in the presence of elemental iron (Fig. 16.1). Moreover, the formation of... [Pg.317]

Fig. 2. Dependence of basicity and catalytic activity on calcination temperature of CaO (O) Basic sites with > 15 ( ) relative activity for Tishchenko reaction of benzaldehyde ( ) number of reducing sites ( ) activity for styrene polymerization and (A) relative propene hydrogenation activity ( ). Fig. 2. Dependence of basicity and catalytic activity on calcination temperature of CaO (O) Basic sites with > 15 ( ) relative activity for Tishchenko reaction of benzaldehyde ( ) number of reducing sites ( ) activity for styrene polymerization and (A) relative propene hydrogenation activity ( ).
Recently, alkylation of alkyl aromatic hydrocarbons such as toluene, ethylbenzene, cumene, and xylenes with ethene, propene, and 1,2-diphenylethene was investigated by Kijenski et al. (245), who used superbasic K-MgO and K-AI2O3 catalysts at low temperature at atmospheric and elevated pressures. The reaction kinetics, EPR measurements of adsorbed intermediates, and the effects of poisoning determined by the radical trap TEMPO (2,2,6,6-tetramethyl-l-piperidinyloxyl, free radical) led the authors to conclude that sites are the catalytically active centers. To demonstrate the importance of strong one-electron donor sites (F ) for the alkylation and the inactivity of strong two-electron donor centers, the ethylation of cumene, ethylbenzene, and toluene was carried out with MgO-10%NaOH. On this catalyst, strong basic two-electron donor sites (27 33) were found, along... [Pg.284]

Hydroboration-oxidation of alkenes preparation of alcohols Addition of water to alkenes by hydroboration-oxidation gives alcohols via anti-Markovnikov addition. This addition is opposite to the acid-catalysed addition of water. Hydrohoration is regioselective and syn stereospecific. In the addition reaction, borane bonds to the less substituted carbon, and hydrogen to the more substituted carbon of the double bond. For example, propene reacts with borane and THF complex, followed by oxidation with basic hydrogen peroxide (H2O2), to yield propanol. [Pg.206]

The stereoselective cyclopropanation of chiral alkenes can be divided into two classes cyclic and acyclic alkenes. Furthermore, within each class, a subdivision exists involving those that contain a proximal basic group that can direct the cyclopropanation reaction of zinc carbenoids and the others that do not. The discrimination of reactivity between alkenes that possess a proximal basic group and those that do not was first highhghted early on when Simmons and Smith noticed that the cyclopropanation of l-(o-methoxyphenyl)-l-propene was more efficient than that of the related meta and para isomers (equation 46). ... [Pg.256]

In this section we shall discuss the development of a global kinetic model for DOC. The basic model reactions considered in the DOC model are summarized in Table II. Here the real HC mixture is modeled by two characteristic hydrocarbons—propene and decane. Propene represents more reactive, light hydrocarbons, which practically do not adsorb during cold start, while decane is a representative of heavier hydrocarbons with significant adsorption on... [Pg.131]

Ethene Vinyl acetate Propene Isobutene 1-Octene Basic momomer Basic momomer... [Pg.188]


See other pages where Propene basicity is mentioned: [Pg.57]    [Pg.57]    [Pg.439]    [Pg.68]    [Pg.93]    [Pg.1037]    [Pg.748]    [Pg.22]    [Pg.432]    [Pg.383]    [Pg.107]    [Pg.76]    [Pg.169]    [Pg.374]    [Pg.301]    [Pg.24]    [Pg.179]    [Pg.133]    [Pg.133]    [Pg.54]    [Pg.310]    [Pg.187]    [Pg.195]    [Pg.215]    [Pg.295]    [Pg.191]    [Pg.198]    [Pg.381]    [Pg.115]    [Pg.272]    [Pg.338]    [Pg.250]    [Pg.269]    [Pg.283]    [Pg.68]    [Pg.122]    [Pg.102]    [Pg.104]   
See also in sourсe #XX -- [ Pg.163 ]




SEARCH



© 2024 chempedia.info