Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Propanone formation

The reaction can, however, be made preparative for (91) by a continuous distillation/siphoning process in a Soxhlet apparatus equilibrium is effected in hot propanone over solid Ba(OH)2 (as base catalyst), the equilibrium mixture [containing 2% (91)] is then siphoned off. This mixture is then distilled back on to the Ba(OH)2, but only propanone (b.p. 56°) will distil out, the 2% of 2-methyl-2-hydroxypentan-4-one ( diacetone alcohol , 91, b.p. 164°) being left behind. A second siphoning will add a further 2% equilibrium s worth of (91) to the first 2%, and more or less total conversion of (90) — (91) can thus ultimately be effected. These poor aldol reactions can, however, be accomplished very much more readily under acid catalysis. The acid promotes the formation of an ambient concentration of the enol form (93) of, for example, propanone (90), and this undergoes attack by the protonated form of a second molecule of carbonyl compound, a carbocation (94) ... [Pg.225]

In an intramolecular version of ketocarbenoid a-C/H insertion, copper-promoted decomposition of l-diazo-3-(pyrrol-l-yl)-2-propanone (258a) or l-diazo-4-(pyrrol-l-yl)-2-butanone (258b) resulted in quantitative formation of the respective cycli-zation product 259 242 >. The cyclization 260 -> 261, on the other hand, is a low-yield reaction which is accompanied by olefin formation. The product ratio was found to vary with the copper catalyst used, but the total yield never exceeded 35 % 243>. [Pg.183]

That specific hydride transfer from carbon to carbon does occur, was established by showing that use of labelled (Me2CDO)3Al led to the formation of RjCDOH. The reaction probably proceeds via a cyclic T.S. such as (47), though some cases have been observed in which two moles of alkoxide are involved—one to transfer hydride ion, while the other complexes with the carbonyl oxygen atom. The reaction has now been essentially superseded by MH reductions, but can sometimes be made to operate in the reverse direction (oxidation) by use of Al(OCMc3)3 catalyst, and with a large excess of propanone to drive the equilibrium over to the left. This reverse (oxidation) process is generally referred to as the Oppenauer reaction. [Pg.216]

Both D-[l- C]xylose and D-[5- C]arabinose were exposed to a concentrated phosphate buffer solution (pH 6.7). 1-Hydroxy-2-propanone (ace-tol) was distilled from the heated solution. Radioassay indicated that similar labeling [3- C] occurred in the acetol from both pentoses, with loss of the configurational difference thus, a 3-ketopentose or its enediol was suggested as an intermediate. Further work with 3-0- and 6-0-methyl-D-glucose and with 1-0-methyl-D-fructose indicated that /3-elimination from a 3-ketose or, in the case of a hexose, from a 3-ketose or a 4-ketose, or both, tautomerization of the resulting a-diketone to a /3-diketone, and hydrolytic cleavage are essential steps in the formation of acetol. [Pg.277]

The second example was the pyruvate decarboxylase catalyzed formation of (ll )-l-hydroxy-l-phenyl-2-propanone (PAC) with benzaldehyde as substrate (Fig. 5 a) [64]. This second reaction shows one potential limitation of this method. Some compounds are too volatile for direct measurement by MALDl mass spectrometry or they do not ionize directly due to their nonpolar character. In this case, these compounds have to be derivatized prior to their measurement in order to reduce their volatihty and to introduce ionizable functions. This is, however, often very easy using well estabhshed quantitative reactions, e.g., formation of oximes from aldehydes and sugars (Fig. 5b). [Pg.15]

From the base-catalyzed degradation of D-fructose (pH 8.0), Shaw and coworkers147 identified 18 compounds, none of which was (a) isomeric with the starting material, or (b) a simple dehydration product. Among the products, the hydroxy-2-butanones and 1-hydroxy-2-propanone (acetol) were shown to participate in forming the carbo-cyclic products identified, but the mechanism of their formation was not elucidated. Several furan derivatives were isolated, but no lactic acid was isolated. In a similar study but with weak acid,41 most of the products were formed by a combination of enolization and dehydration steps, with little fragmentation. [Pg.200]

The almost exclusive formation of 4(5)-(hydroxymethyl)imidazole (27) from D-fructose, l,3-dihydroxy-2-propanone, and D-fructose-containing compounds (for example, sucrose) is to be expected... [Pg.347]

Complex Formation Between 2-Propanone and Chloroform-D. A Review of Published Work (Fell and Shurvell, 1996)... [Pg.191]

For this type of C-C bond formation both stereoisomers of the hydroxyphenyl-propanone can be obtained using either the BFD mentioned above or the benz-aldehyde lyase (BAL). Both of these enzymes are dependent on thiamine diphosphate (ThDP) as cofactor [22]. For the enantioselective reduction of the intermediate also, both stereoisomers can be obtained by using two different ADH enzymes. Thus all four possible stereoisomers of the diol can be obtained in high optical purity (see Scheme. 3.1.1) [23]. [Pg.421]


See other pages where Propanone formation is mentioned: [Pg.329]    [Pg.676]    [Pg.13]    [Pg.41]    [Pg.216]    [Pg.218]    [Pg.220]    [Pg.180]    [Pg.125]    [Pg.155]    [Pg.159]    [Pg.187]    [Pg.215]    [Pg.229]    [Pg.97]    [Pg.110]    [Pg.34]    [Pg.69]    [Pg.102]    [Pg.41]    [Pg.218]    [Pg.220]    [Pg.1541]    [Pg.293]    [Pg.261]    [Pg.140]    [Pg.109]    [Pg.409]    [Pg.199]    [Pg.340]    [Pg.345]    [Pg.114]    [Pg.115]    [Pg.116]    [Pg.235]    [Pg.37]    [Pg.114]    [Pg.115]    [Pg.116]   
See also in sourсe #XX -- [ Pg.46 , Pg.293 ]




SEARCH



2-Propanone

© 2024 chempedia.info